Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1342418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375452

RESUMO

Gram-negative bacterium Acinetobacter sp. Tol 5 exhibits high adhesiveness to various surfaces of general materials, from hydrophobic plastics to hydrophilic glass and metals, via AtaA, an Acinetobacter trimeric autotransporter adhesin Although the adhesion of Tol 5 is nonspecific, Tol 5 cells may have prefer materials for adhesion. Here, we examined the adhesion of Tol 5 and other bacteria expressing different TAAs to various materials, including antiadhesive surfaces. The results highlighted the stickiness of Tol 5 through the action of AtaA, which enabled Tol 5 cells to adhere even to antiadhesive materials, including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush with steric hindrance, and mica with an ultrasmooth surface. Single-cell force spectroscopy as an atomic force microscopy technique revealed the strong cell adhesion force of Tol 5 to these antiadhesive materials. Nevertheless, Tol 5 cells showed a weak adhesion force toward a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine (MPC) polymer-coated surface. Dynamic flow chamber experiments revealed that Tol 5 cells, once attached to the MPC polymer-coated surface, were exfoliated by weak shear stress. The underlying adhesive mechanism was presumed to involve exchangeable, weakly bound water molecules. Our results will contribute to the understanding and control of cell adhesion of Tol 5 for immobilized bioprocess applications and other TAA-expressing pathogenic bacteria of medical importance.

2.
ACS Synth Biol ; 12(5): 1437-1446, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37155350

RESUMO

Artificial cells are membrane vesicles mimicking cellular functions. To date, giant unilamellar vesicles made from a single lipid membrane with a diameter of 10 µm or more have been used to create artificial cells. However, the creation of artificial cells that mimic the membrane structure and size of bacteria has been limited due to technical restrictions of conventional liposome preparation methods. Here, we created bacteria-sized large unilamellar vesicles (LUVs) with proteins localized asymmetrically to the lipid bilayer. Liposomes containing benzylguanine-modified phospholipids were prepared by combining the conventional water-in-oil emulsion method and the extruder method, and green fluorescent protein fused with SNAP-tag was localized to the inner leaflet of the lipid bilayer. Biotinylated lipid molecules were then inserted externally, and the outer leaflet was modified with streptavidin. The resulting liposomes had a size distribution in the range of 500-2000 nm with a peak at 841 nm (the coefficient of variation was 10.3%), which was similar to that of spherical bacterial cells. Fluorescence microscopy, quantitative evaluation using flow cytometry, and western blotting proved the intended localization of different proteins on the lipid membrane. Cryogenic electron microscopy and quantitative evaluation by α-hemolysin insertion revealed that most of the created liposomes were unilamellar. Our simple method for the preparation of bacteria-sized LUVs with asymmetrically localized proteins will contribute to the creation of artificial bacterial cells for investigating functions and the significance of their surface structure and size.


Assuntos
Lipossomos , Lipossomas Unilamelares , Lipossomos/química , Lipossomas Unilamelares/química , Bicamadas Lipídicas/química , Fosfolipídeos , Microscopia de Fluorescência , Bactérias
3.
J Biosci Bioeng ; 133(3): 195-207, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998688

RESUMO

Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.


Assuntos
COVID-19 , Nanopartículas Metálicas , COVID-19/prevenção & controle , Membrana Celular , Ouro , Humanos , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
4.
J Colloid Interface Sci ; 606(Pt 1): 628-634, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416455

RESUMO

The sticky bacterium Acinetobacter sp. Tol 5 adheres to various material surfaces via its cell surface nanofiber protein, AtaA. This adhesiveness has only been evaluated based on the amount of cells adhering to a surface. In this study, the adhesion force mapping of a single Tol 5 cell in liquid using the quantitative imaging mode of atomic force microscopy (AFM) revealed that the adhesion of Tol 5 was near 2 nN, which was 1-2 orders of magnitude higher than that of other adhesive bacteria. The adhesion force of a cell became stronger with the increase in AtaA molecules present on the cell surface. Many fibers of peritrichate AtaA molecules simultaneously interact with a surface, strongly attaching the cell to the surface. The adhesion force of a Tol 5 cell was drastically reduced in the presence of 1% casamino acids but not in deionized water (DW), although both liquids decrease the adhesiveness of Tol 5 cells, suggesting that DW and casamino acids inhibit the cell approaching step and the subsequent direct interaction step of AtaA with surfaces, respectively. Heterologous production of AtaA provided non-adhesive Acinetobacter baylyi ADP1 cells with a strong adhesion force to AFM tip surfaces of silicon and gold.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana , Acinetobacter , Bactérias , Adesão Celular , Microscopia de Força Atômica , Propriedades de Superfície
5.
Front Bioeng Biotechnol ; 10: 1095057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698637

RESUMO

Cell immobilization is an important technique for efficiently utilizing whole-cell biocatalysts. We previously invented a method for bacterial cell immobilization using AtaA, a trimeric autotransporter adhesin from the highly sticky bacterium Acinetobacter sp. Tol 5. However, except for Acinetobacter species, only one bacterium has been successfully immobilized using AtaA. This is probably because the heterologous expression of large AtaA (1 MDa), that is a homotrimer of polypeptide chains composed of 3,630 amino acids, is difficult. In this study, we identified the adhesive domain of AtaA and constructed a miniaturized AtaA (mini-AtaA) to improve the heterologous expression of ataA. In-frame deletion mutants were used to perform functional mapping, revealing that the N-terminal head domain is essential for the adhesive feature of AtaA. The mini-AtaA, which contains a homotrimer of polypeptide chains from 775 amino acids and lacks the unnecessary part for its adhesion, was properly expressed in E. coli, and a larger amount of molecules was displayed on the cell surface than that of full-length AtaA (FL-AtaA). The immobilization ratio of E. coli cells expressing mini-AtaA on a polyurethane foam support was significantly higher compared to the cells with or without FL-AtaA expression, respectively. The expression of mini-AtaA in E. coli had little effect on the cell growth and the activity of another enzyme reflecting the production level, and the immobilized E. coli cells could be used for repetitive enzymatic reactions as a whole-cell catalyst.

6.
Sci Rep ; 10(1): 21249, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277518

RESUMO

Enterohemorrhagic and enteropathogenic Escherichia coli are among the most important food-borne pathogens, posing a global health threat. The virulence factor intimin is essential for the attachment of pathogenic E. coli to the intestinal host cell. Intimin consists of four extracellular bacterial immunoglobulin-like (Big) domains, D00-D2, extending into the fifth lectin subdomain (D3) that binds to the Tir-receptor on the host cell. Here, we present the crystal structures of the elusive D00-D0 domains at 1.5 Å and D0-D1 at 1.8 Å resolution, which confirms that the passenger of intimin has five distinct domains. We describe that D00-D0 exhibits a higher degree of rigidity and D00 likely functions as a juncture domain at the outer membrane-extracellular medium interface. We conclude that D00 is a unique Big domain with a specific topology likely found in a broad range of other inverse autotransporters. The accumulated data allows us to model the complete passenger of intimin and propose functionality to the Big domains, D00-D0-D1, extending directly from the membrane.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Estrutura Secundária de Proteína , Fatores de Virulência/química , Fatores de Virulência/metabolismo
7.
Environ Sci Technol ; 54(4): 2520-2529, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31972092

RESUMO

In this study, we elucidated the formation process of an unconventional biofilm formed by a bacterium autoagglutinating through sticky, long, and peritrichate nanofibers. Understanding the mechanisms of biofilm formation is essential to control microbial behavior and improve environmental biotechnologies. Acinetobacter sp. Tol 5 autoagglutinate through the interaction of the long, peritrichate nanofiber protein AtaA, a trimeric autotransporter adhesin. Using AtaA, without cell growth or extracellular polymeric substances production, Tol 5 cells quickly form an unconventional biofilm. The process forming this unconventional biofilm started with cell-cell interactions, proceeded to cell clumping, and led to the formation of large cell aggregates. The cell-cell interaction was described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory based on a new concept, which considers two independent interactions between two cell bodies and between two AtaA fiber tips forming a discontinuous surface. If cell bodies cannot collide owing to an energy barrier at low ionic strengths but approach within the interactive distance of AtaA fibers, cells can agglutinate through their contact. Cell clumping proceeds following the cluster-cluster aggregation model, and an unconventional biofilm containing void spaces and a fractal nature develops. Understanding its formation process would extend the utilization of various types of biofilms, enhancing environmental biotechnologies.


Assuntos
Acinetobacter , Nanofibras , Adesinas Bacterianas , Aderência Bacteriana , Biofilmes
8.
J Biosci Bioeng ; 129(4): 412-417, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31653547

RESUMO

AtaA, a trimeric autotransporter adhesin from Acinetobacter sp. Tol 5, exhibits nonspecific, high adhesiveness to abiotic surfaces. For identification of the functional domains of AtaA, precise design of domain-deletion mutants is necessary so as not to cause undesirable structural distortion. Here, we designed and constructed three types of AtaA mutants from which the same domain, FGG1, was deleted. The first mutant was designed to preserve the periodicity of hydrophobic residues in the coiled-coil segments sandwiching the deleted region. After the deletion, the protein was properly displayed on the cell surface and had the same adhesive function as the wild type. Transmission electron microscopy (TEM) imaging and circular dichroism (CD) spectroscopy showed that its isolated passenger domain had the same fiber structure as in the AtaA wild type. In contrast, a mutant designed to disturb the coiled-coil periodicity at the deletion site failed to reach the cell surface. Although secretion occurred for the mutant designed with a flexible connector between the coiled coils, the cells exhibited a decrease in adhesiveness. Furthermore, TEM imaging of the mutant fibers showed bending at the fiber tip and changes in their CD spectrum indicated a decrease in secondary structure content. Thus, we succeeded to natively display the huge homotrimeric fiber structure of AtaA on the cell surface after precise deletion of a domain, maintaining the proper folding state and adhesive function by preserving its coiled-coil periodicity. This strategy enables us to construct various domain-deletion mutants of AtaA without structural distortion for complete functional mapping.


Assuntos
Acinetobacter/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica/fisiologia , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína/genética , Transporte Proteico/genética , Deleção de Sequência , Relação Estrutura-Atividade
9.
J Am Chem Soc ; 141(48): 19058-19066, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697479

RESUMO

The bacterial cell surface structure has important roles for various cellular functions. However, research on reconstituting bacterial cell surface structures is limited. This study aimed to bottom-up create a cell-sized liposome covered with AtaA, the adhesive bacterionanofiber protein localized on the cell surface of Acinetobacter sp. Tol 5, without the use of the protein secretion and assembly machineries. Liposomes containing a benzylguanine derivative-modified phospholipid were decorated with a truncated AtaA protein fused to a SNAP-tag expressed in a soluble fraction in Escherichia coli. The obtained liposome showed a similar surface structure and function to that of native Tol 5 cells and adhered to both hydrophobic and hydrophilic solid surfaces. Furthermore, this artificial cell was able to drive an enzymatic reaction in the adhesive state. The developed artificial cellular system will allow for analysis of not only AtaA, but also other cell surface proteins under a cell-mimicking environment. In addition, AtaA-decorated artificial cells may inspire the development of biotechnological applications that require immobilization of cells onto a variety of solid surfaces, in particular, in environments where the use of genetically modified organisms is prohibited.


Assuntos
Acinetobacter/química , Adesivos/química , Células Artificiais/química , Proteínas de Bactérias/química , Nanofibras/química , Células Artificiais/citologia , Biocatálise , Guanina/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Fosfolipídeos/química
10.
J Biosci Bioeng ; 128(5): 544-550, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31208800

RESUMO

Acinetobacter sp. Tol 5 exhibits an autoagglutinating nature and high adhesiveness to various abiotic surfaces through its bacterionanofiber protein AtaA. We have developed new bacterial immobilization methods utilizing the high adhesiveness of AtaA. We previously reported that salt is essential for the adhesiveness of AtaA. In the current study, we unexpectedly found that Tol 5 cells were not immobilized onto polyurethane foam support during growth in LB medium although AtaA was properly expressed and displayed onto the cell surface. The adhesion of Tol 5 resting cells was not affected by sugars but drastically inhibited by yeast extract and casein hydrolysates such as tryptone and casamino acids technical grade (CA-T). Some amino acids, which are major components of CA-T, partially inhibited the adhesion of Tol 5 cells. Experimental results suggested that oligopeptides might effectively inhibit the cell adhesion. Immobilized cells onto the support through AtaA were detached in CA-T solution. Also, the detached cells could be re-immobilized onto the support without impairing of their adhesiveness by replacing CA-T solution to a basal salt medium. Microscopic observation revealed that breaking of AtaA-mediated cell-cell interaction is important for the detachment of Tol 5 cells from the support. CA-T also inhibited AtaA-mediated autoagglutination and dispersed cell clumps through AtaA. This is the first report on adhesion inhibitors against AtaA and suggests that casein hydrolysates like CA-T would be a powerful tool for controlling AtaA-mediated bacterial immobilization.


Assuntos
Caseínas/metabolismo , Oligopeptídeos/metabolismo , Acinetobacter/metabolismo , Células Imobilizadas/metabolismo
11.
Microb Cell Fact ; 16(1): 123, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720107

RESUMO

BACKGROUND: Immobilization of microbial cells is an important strategy for the efficient use of whole-cell catalysts because it simplifies product separation, enables the cell concentration to be increased, stabilizes enzymatic activity, and permits repeated or continuous biocatalyst use. However, conventional immobilization methods have practical limitations, such as limited mass transfer in the inner part of a gel, gel fragility, cell leakage from the support matrix, and adverse effects on cell viability and catalytic activity. We previously showed a new method for bacterial cell immobilization using AtaA, a member of the trimeric autotransporter adhesin family found in Acinetobacter sp. Tol 5. This approach is expected to solve the drawbacks of conventional immobilization methods. However, similar to all other immobilization methods, the use of support materials increases the cost of bioprocesses and subsequent waste materials. RESULTS: We found that the stickiness of the AtaA molecule isolated from Tol 5 cells is drastically diminished at ionic strengths lower than 10 mM and that it cannot adhere in deionized water, which also inhibits cell adhesion mediated by AtaA. Cells immobilized on well plates and polyurethane foam in a salt solution were detached in deionized water by rinsing and shaking, respectively. The detached cells regained their adhesiveness in a salt solution and could rapidly be re-immobilized. The cells expressing the ataA gene maintained their adhesiveness throughout four repeated immobilization and detachment cycles and could be repeatedly immobilized to polyurethane foam by a 10-min shake in a flask. We also demonstrated that both bacterial cells and a support used in a reaction could be reused for a different type of reaction after detachment of the initially immobilized cells from the support and a subsequent immobilization step. CONCLUSIONS: We invented a unique reversible immobilization method based on the salt-dependent adhesion of the AtaA molecule that allows us to reuse bacterial cells and supports by a simple manipulation involving a deionized water wash. This mitigates problems caused by the use of support materials and greatly helps to enhance the efficiency and productivity of microbial production processes.


Assuntos
Acinetobacter/fisiologia , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Células Imobilizadas , Cloreto de Sódio/farmacologia , Acinetobacter/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Concentração Osmolar
12.
J Biol Chem ; 291(38): 20096-112, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27466361

RESUMO

Intimin is an essential adhesin of attaching and effacing organisms such as entropathogenic Escherichia coli It is also the prototype of type Ve secretion or inverse autotransport, where the extracellular C-terminal region or passenger is exported with the help of an N-terminal transmembrane ß-barrel domain. We recently reported a stalled secretion intermediate of intimin, where the passenger is located in the periplasm but the ß-barrel is already inserted into the membrane. Stalling of this mutant is due to the insertion of an epitope tag at the very N terminus of the passenger. Here, we examined how this insertion disrupts autotransport and found that it causes misfolding of the N-terminal immunoglobulin (Ig)-like domain D00. We could also stall the secretion by making an internal deletion in D00, and introducing the epitope tag into the second Ig-like domain, D0, also resulted in reduced passenger secretion. In contrast to many classical autotransporters, where a proximal folding core in the passenger is required for secretion, the D00 domain is dispensable, as the passenger of an intimin mutant lacking D00 entirely is efficiently exported. Furthermore, the D00 domain is slightly less stable than the D0 and D1 domains, unfolding at ∼200 piconewtons (pN) compared with ∼250 pN for D0 and D1 domains as measured by atomic force microscopy. Our results support a model where the secretion of the passenger is driven by sequential folding of the extracellular Ig-like domains, leading to vectorial transport of the passenger domain across the outer membrane in an N to C direction.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Dobramento de Proteína , Adesinas Bacterianas/genética , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Domínios Proteicos
13.
Sci Rep ; 6: 28020, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27305955

RESUMO

Trimeric autotransporter adhesins (TAAs), cell surface proteins of Gram-negative bacteria, mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific, high adhesiveness to abiotic material surfaces as well as to biotic surfaces. AtaA is a homotrimer of polypeptides comprising 3,630 amino acids and forms long nanofibers; therefore, it is too large and structurally complex to be produced as a recombinant protein. In this study, we isolated AtaA's passenger domain (AtaA PSD), which is translocated to the cell surface through the C-terminal transmembrane domain and exhibits biological functions, using a new method. We introduced a protease recognition site and reaped AtaA nanofibers 225 nm in length from the cell surface through proteolytic cleavage with a specific protease. Biochemical and biophysical analyses of the purified native AtaA PSD revealed that it has a stable structure under alkaline and acidic conditions. Temperatures above 80 °C, which disrupted AtaA's higher-order structure but maintained the full-length AtaA polypeptide, inactivated AtaA's nonspecific adhesiveness, suggesting that the stickiness of AtaA requires its 3D structure. This finding refutes the widespread but vague speculation that large unfolded polypeptides readily stick to various surfaces.


Assuntos
Acinetobacter/fisiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Nanofibras/química , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Células Cultivadas , Conformação Proteica
14.
Mol Microbiol ; 101(3): 394-410, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074146

RESUMO

Trimeric autotransporter adhesins (TAAs), fibrous proteins on the cell surface of Gram-negative bacteria, have attracted attention as virulence factors. However, little is known about the mechanism of their biogenesis. AtaA, a TAA of Acinetobacter sp. Tol 5, confers nonspecific, high adhesiveness to bacterial cells. We identified a new gene, tpgA, which forms a single operon with ataA and encodes a protein comprising two conserved protein domains identified by Pfam: an N-terminal SmpA/OmlA domain and a C-terminal OmpA_C-like domain with a peptidoglycan (PGN)-binding motif. Cell fractionation and a pull-down assay showed that TpgA forms a complex with AtaA, anchoring it to the outer membrane (OM). Isolation of total PGN-associated proteins showed TpgA binding to PGN. Disruption of tpgA significantly decreased the adhesiveness of Tol 5 because of a decrease in surface-displayed AtaA, suggesting TpgA involvement in AtaA secretion. This is reminiscent of SadB, which functions as a specific chaperone for SadA, a TAA in Salmonella species; however, SadB anchors to the inner membrane, whereas TpgA anchors to the OM through AtaA. The genetic organization encoding the TAA-TpgA-like protein cassette can be found in diverse Gram-negative bacteria, suggesting a common contribution of TpgA homologues to TAA biogenesis.


Assuntos
Acinetobacter/metabolismo , Adesinas Bacterianas/metabolismo , Peptidoglicano/metabolismo , Adesinas Bacterianas/biossíntese , Parede Celular/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas/metabolismo , Análise de Sequência de Proteína , Sistemas de Secreção Tipo V/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA