RESUMO
Mast cells (MCs) are tissue-resident cells of hematopoietic origin that play an important role in host's defense mechanism against nematodes. However, excessive activation of these cells contributes to the development of certain allergic diseases. Immunoglobin E (IgE) is one of the well-known molecules that activate MCs. Even in the absence of specific antigens, the binding of highly cytokinergic IgE to FcεRI on MCs prolongs their survival and induces cytokine production without enhancing their degranulation. In the present study, we examined the effects of the members of the interleukin-10 (IL-10) family of cytokines on IgE-mediated MCs functions. The receptors including Il10r1, Il10r2, and Il20r2, but not Il20r1, Il22r1 or Il28r1, were constitutively expressed in mouse bone marrow cell-derived cultured MCs (BMCMCs), suggesting that IL-10 may influence MCs function. Indeed, we found that only IL-10 could influence upon BMCMCs function; IL-10 enhanced prolongation of survival, promoted IL-6 and/or IL-13 production dependently of STAT1 and STAT3, and suppressed tumor necrosis factor production independently of STAT1 and STAT3 on IgE-stimulated BMCMCs. Moreover, the IL-10-mediated enhancement of IL-6 production by IgE-stimulated BMCMCs promotes Th17 cell expansion. These results suggest that IL-10 has a dual role as an anti-inflammatory and pro-inflammatory cytokine in MCs functions.
Assuntos
Diferenciação Celular , Imunoglobulina E , Interleucina-10 , Interleucina-6 , Mastócitos , Fator de Transcrição STAT1 , Células Th17 , Animais , Mastócitos/metabolismo , Mastócitos/imunologia , Interleucina-10/metabolismo , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Camundongos , Fator de Transcrição STAT1/metabolismo , Interleucina-6/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Fator de Transcrição STAT3/metabolismo , Células CultivadasRESUMO
Cancer immunotherapy is a type of cancer therapy utilizing the immune system to fight against tumors [...].
Assuntos
Imunoterapia , NeoplasiasRESUMO
Chemical respiratory sensitisation is a serious health problem. However, to date, there are no validated test methods available for identifying respiratory sensitisers. The aim of this study was to develop an in vitro sensitisation test by modifying the human cell line activation test (h-CLAT) to detect respiratory sensitisers and distinguish them from skin sensitisers. THP-1 cells were exposed to the test chemicals (two skin sensitisers and six respiratory sensitisers), either as monocultures or as cocultures with air-liquid interface-cultured reconstructed human bronchial epithelium. The responses were analysed by measuring the expression levels of surface markers on THP-1 cells (CD86, CD54 and OX40L) and the concentrations of cytokines in the culture media (interleukin (IL)-8, IL-33 and thymic stromal lymphopoietin (TSLP)). The cocultures exhibited increased CD54 expression on THP-1 cells; moreover, in the cocultures but not in the monocultures, exposure to two uronium salts (i.e. respiratory sensitisers) increased CD54 expression on THP-1 cells to levels above the criteria for a positive h-CLAT result. Additionally, exposure to the respiratory sensitiser abietic acid, significantly increased IL-8 concentration in the culture medium, but only in the cocultures. Although further optimisation of the method is needed to distinguish respiratory from skin sensitisers by using these potential markers (OX40L, IL-33 and TSLP), the coculture of THP-1 cells with bronchial epithelial cells offers a potentially useful approach for the detection of respiratory sensitisers.
Assuntos
Alérgenos , Interleucina-33 , Humanos , Técnicas de Cocultura , Pele , Epitélio , CitocinasRESUMO
Current worldwide mRNA vaccination against SARS-CoV-2 by intramuscular injection using a needled syringe has greatly protected numerous people from COVID-19. An intramuscular injection is generally well tolerated, safer and easier to perform on a large scale, whereas the skin has the benefit of the presence of numerous immune cells, such as professional antigen-presenting dendritic cells. Therefore, intradermal injection is considered superior to intramuscular injection for the induction of protective immunity, but more proficiency is required for the injection. To improve these issues, several different types of more versatile jet injectors have been developed to deliver DNAs, proteins or drugs by high jet velocity through the skin without a needle. Among them, a new needle-free pyro-drive jet injector has a unique characteristic that utilizes gunpower as a mechanical driving force, in particular, bi-phasic pyrotechnics to provoke high jet velocity and consequently the wide dispersion of the injected DNA solution in the skin. A significant amount of evidence has revealed that it is highly effective as a vaccinating tool to induce potent protective cellular and humoral immunity against cancers and infectious diseases. This is presumably explained by the fact that shear stress generated by the high jet velocity facilitates the uptake of DNA in the cells and, consequently, its protein expression. The shear stress also possibly elicits danger signals which, together with the plasmid DNA, subsequently induces the activation of innate immunity including dendritic cell maturation, leading to the establishment of adaptive immunity. This review summarizes the recent advances in needle-free jet injectors to augment the cellular and humoral immunity by intradermal injection and the possible mechanism of action.
Assuntos
COVID-19 , Humanos , Injeções Intradérmicas , Injeções a Jato , COVID-19/prevenção & controle , SARS-CoV-2 , Injeções IntramuscularesRESUMO
BACKGROUND: The prognosis for recurrence cases of hormone receptor-positive HER2-negative breast cancer remains poor, and treatment strategies that emphasize quality of life have often been chosen, with few physicians aiming for a cure. Our objective is to assess the validity of such current treatment strategies. CASE PRESENTATION: A 74-year-old Asian woman with multiple lung and liver metastases after local recurrence of breast cancer was treated with two different cyclin-dependent kinases 4/6 inhibitors sequentially in combination with endocrine therapy. Flow cytometric analysis of the patient's peripheral blood mononuclear cells was also performed to evaluate the host's immune status. Complete remission was achieved without cytotoxic agents and the patient remains disease free to this day, 6 years after the initial relapse. Additionally, no increase in the population of the immunosenescent T cells with a phenotype of CD8+CD28- was observed in the patient's peripheral blood mononuclear cells, suggesting that the immune system was well maintained. CONCLUSIONS: We present this case study to develop new treatment strategies for recurrent breast cancer that is not only bound to misinterpretations of the Hortobagyi algorithm, but also aim for a cure with noncytotoxic agents to maintain the host's immune system and early detection of recurrence.
Assuntos
Neoplasias da Mama , Leucócitos Mononucleares , Humanos , Feminino , Qualidade de Vida , Neoplasias da Mama/tratamento farmacológico , Doença Crônica , Recidiva , CiclinasRESUMO
Cell transfer therapy using mesenchymal stem cells (MSCs) has pronounced therapeutic potential, but concerns remain about immune rejection, emboli formation, and promotion of tumor progression. Because the mode of action of MSCs highly relies on their paracrine effects through secretion of bioactive molecules, cell-free therapy using the conditioned medium (CM) of MSCs is an attractive option. However, the effects of MSC-CM on tumor progression have not been fully elucidated. Herein, we addressed this issue and investigated the possible underlying molecular mechanisms. The CM of MSCs derived from human bone marrow greatly inhibited the in vitro growth of several human tumor cell lines and the in vivo growth of the SCCVII murine squamous cell carcinoma cell line with reduced neovascularization. Exosomes in the MSC-CM were only partially involved in the inhibitory effects. The CM contained a variety of cytokines including insulin-like growth factor binding proteins (IGFBPs). Among them, IGFBP-4 greatly inhibited the in vitro growth of these tumors and angiogenesis, and immunodepletion of IGFBP-4 from the CM significantly reversed these effects. Of note, the CM greatly reduced the phosphorylation of AKT, ERK, IGF-1 receptor beta, and p38 MAPK in a partly IGFBP4-dependent manner, possibly through its binding to IGF-1/2 and blocking the signaling. The CM depleted of IGFBP-4 also reversed the inhibitory effects on in vivo tumor growth and neovascularization. Thus, MSC-CM has potent inhibitory effects on tumor growth and neovascularization in an IGFBP4-dependent manner, suggesting that cell-free therapy using MSC-CM could be a safer promising alternative for even cancer patients.
Assuntos
Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Neovascularização Patológica/metabolismoRESUMO
Haptens are small molecules that only elicit an immune response when bound to proteins. Haptens initially bind to self-proteins and activate innate immune responses by complex mechanisms via inflammatory cytokines and damage-associated molecular patterns and the subsequent upregulation of costimulatory signals such as cluster of differentiation 86 (CD86) on dendritic cells. Subsequent interactions between CD86 and CD28 on T cells are critically important for properly activating naive T cells and inducing interleukin 2 production, leading to the establishment of adaptive immunity via effector and memory T cells. Accumulating evidence revealed the involvement of haptens in the development of various autoimmune-like diseases such as allergic, inflammatory, and autoimmune diseases including allergic contact dermatitis, atopy, asthma, food allergy, inflammatory bowel diseases, hemolytic anemia, liver injury, leukoderma, and even antitumor immunity. Therefore, the development of in vitro testing alternatives to evaluate in advance whether a substance might lead to the development of these diseases is highly desirable. This review summarizes and discusses recent advances in chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via haptenation and the possible molecular underlying mechanisms, as well as in vitro testing alternatives to evaluate in advance whether a substance might cause the development of these diseases.
RESUMO
Although several in vitro assays that predict the sensitizing potential of chemicals have been developed, none can distinguish between chemical respiratory and skin sensitizers. Recently, we established a new three-dimensional dendritic cell (DC) coculture system consisting of a human airway epithelial cell line, immature DCs derived from human peripheral monocytes, and a human lung fibroblast cell line. In this coculture system, compared to skin sensitizers, respiratory sensitizers showed enhanced mRNA expression in DCs of the key costimulatory molecule OX40 ligand (OX40L), which is important for T helper 2 (Th2) cell differentiation. Herein, we established a new two-step DC/T cell coculture system by adding peripheral allogeneic naïve CD4+ T cells to the DCs stimulated in the DC coculture system. In this DC/T cell coculture system, model respiratory sensitizers, but not skin sensitizers, enhanced mRNA expression of the predominant Th2 marker interleukin-4 (IL-4). To improve the versatility, in place of peripheral monocytes, monocyte-derived proliferating cells called CD14-ML were used in the DC coculture system. As in peripheral monocytes, enhanced mRNA expression of OX40L was induced in CD14-ML by respiratory sensitizers compared to skin sensitizers. When these cell lines were applied to the DC/T cell coculture system with peripheral allogeneic naïve CD4+ T cells, respiratory sensitizers but not skin sensitizers enhanced the mRNA expression of IL-4. Thus, this DC/T cell coculture system may be useful for discriminating between respiratory and skin sensitizers by differential mRNA upregulation of IL-4 in T cells.
Assuntos
Técnicas de Cocultura , Interleucina-4 , Células Th2 , Humanos , Diferenciação Celular , Células Cultivadas , Células Dendríticas , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Monócitos , RNA Mensageiro/metabolismo , Células Th2/metabolismoRESUMO
The current success of mRNA vaccines against COVID-19 has highlighted the effectiveness of mRNA and DNA vaccinations. Recently, we demonstrated that a novel needle-free pyro-drive jet injector (PJI) effectively delivers plasmid DNA into the skin, resulting in protein expression higher than that achieved with a needle syringe. Here, we used ovalbumin (OVA) as a model antigen to investigate the potential of the PJI for vaccination against cancers. Intradermal injection of OVA-expression plasmid DNA into mice using the PJI, but not a needle syringe, rapidly and greatly augmented OVA-specific CD8+ T-cell expansion in lymph node cells. Increased mRNA expression of both interferon-γ and interleukin-4 and an enhanced proliferative response of OVA-specific CD8+ T cells, with fewer CD4+ T cells, were also observed. OVA-specific in vivo killing of the target cells and OVA-specific antibody production of both the IgG2a and IgG1 antibody subclasses were greatly augmented. Intradermal injection of OVA-expression plasmid DNA using the PJI showed stronger prophylactic and therapeutic effects against the progression of transplantable OVA-expressing E.G7-OVA tumor cells. Even compared with the most frequently used adjuvants, complete Freund's adjuvant and aluminum hydroxide with OVA protein, intradermal injection of OVA-expression plasmid DNA using the PJI showed a stronger CTL-dependent prophylactic effect. These results suggest that the novel needle-free PJI is a promising tool for DNA vaccination, inducing both a prophylactic and a therapeutic effect against cancers, because of prompt and strong generation of OVA-specific CTLs and subsequently enhanced production of both the IgG2a and IgG1 antibody subclasses.
Assuntos
COVID-19 , Vacinas de DNA , Camundongos , Humanos , Animais , Injeções Intradérmicas , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , Ovalbumina , DNA , Imunoglobulina G , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Poly(acrylic acid) (PAA) is a water-soluble synthetic polymer with tissue-adhesive properties. When PAA is mixed with polyvinylpyrrolidone (PVP) in water, it forms a water-insoluble precipitate that neither swells nor adheres to tissues. METHODS AND RESULTS: We developed a novel solid/solution interface complexation method to obtain a water-swellable PAA/PVP complex. First, PAA solution was dried up in a vessel to form a film. The PAA film was then immersed in an aqueous PVP solution to obtain a highly swollen PAA/PVP hydrogel. Heat drying of the hydrogel yielded a transparent film, while freeze-drying the hydrogel provided a soft sponge. Both the PAA/PVP film and sponge could be re-swelled by water to obtain a bioadhesive gel. A relatively larger specific surface area of the sponge than that of the film led to a more rapid swelling and water absorption behavior and quick adhesion to tissues. The addition of hyaluronic acid (HA) improved the mechanical characteristics of the sponges. PAA/PVP/HA sponges had low cytotoxicity, and they exhibited high hemostatic efficiency in clinical studies after dialysis treatment or tooth extraction, even in patients on antithrombotic drugs. CONCLUSIONS: Such bioadhesive materials consisting of low-toxicity polymers have a high potential for use in medical hemostatic devices.
RESUMO
Background: In recent years, a number of agents possessing novel mechanisms, such as cyclin-dependent kinase 4/6 (CDK 4/6) inhibitors and PIK3CA inhibitors, have been developed for the treatment of hormone receptor-positive (HR+) human epidermal growth factor receptor type negative (HER2-) advanced or recurrent breast cancer. As a result, the treatment strategies for advanced or recurrent breast cancer have changed significantly. The combination of CDK 4/6 inhibitors administration and endocrine therapy is now widely used in the treatment of HR+ HER2- recurrent breast cancer with improved outcomes. In 2021, abemaciclib was approved as post-operative adjuvant combination therapy with endocrine therapy for HR+ HER2- advanced breast cancer and is expected to suppress postoperative recurrence. A range of new agents are being developed in addition to CDK4/6 inhibitors that provided more options of treatment strategies for advanced or recurrent breast cancer, which in turn could improve outcomes. However, the prognosis for the recurrent HR+ HER2- breast cancer remains poor, overall survival (OS) is still very low and a complete cure is difficult even with the treatments. Case Description: In 1998, 24 years ago, neoadjuvant chemotherapy (NAC) and the concept of subtypes were not even widespread, the number of available drugs was far fewer than today, the clinical treatment guidelines had not been established. Nevertheless, we experienced a case of HR+ HER2- advanced breast cancer, stage IIIB at the initial diagnosis, which was consistently treated with the aim of complete cure and with the various treatments available at the time, resulting in long-term survival. 24 years have passed since the initial surgery, the patient has continued to do well despite repeated recurrences and remissions. Conclusions: We report here a case of long-term survival in advanced breast cancer of 24 years after surgery, and remark for future treatment strategies that not bound by the conventional treatment policy that emphasizes quality of life without aiming for complete cure.
RESUMO
Poly(acrylic acid) (PAA) is a water-soluble synthetic polymer that exhibits bioadhesive properties and has been applied in various novel medical devices, such as drug-delivery carriers and hemostatic agents. PAA forms a water-insoluble complex when mixed with polyvinylpyrrolidone (PVP). If PAA and PVP are mixed in water, they form an aggregated precipitate, which neither swells nor adheres to tissues. The formation of the hydrophobic complex was caused by hydrophobic interactions between the main chains of both polymers aligned the same as a zipper. To hinder the zipper-like alignment of the polymer main chains, hyaluronic acid (HA), a macromolecular viscous polysaccharide, was added to the PVP solution prior to complex formation. When the initial concentration of PAA was lower than 0.05%, HA effectively prevented the aggregation of PAA/PVP complexes and resulted in a slightly clouded suspension. Freeze-drying of the mixture yielded a soft white sponge, which could immediately swell in water to form a highly bioadhesive hydrogel. The PAA/PVP complex prepared with HA exhibited high hemostatic efficiency in clinical studies, even in patients on antithrombotic drugs.
RESUMO
T-cell-specific Rap1 deletion causes spontaneous colitis in mice. In the present study, we revealed that Rap1 deficiency in T cells impaired the preceding induction of intestinal RORγt+ Treg cells. In the large intestinal lamina propria (LILP) of T-cell-specific Rap1-knockout mice (Rap1KO mice), Th17 cells were found to increase in a microbiota-dependent manner, and the inhibition of IL-17A production prevented the development of colitis. In the LILP of Rap1KO mice, RORγt+ Treg cells were scarcely induced by 4 weeks of age. The expression of CTLA-4 on Rap1-deficient Treg cells was reduced and the expression of CD80 and CD86 on dendritic cells was consequently elevated in Rap1KO mice. When cultured under each polarizing condition, Rap1-deficient naïve CD4+ T cells did not show biased differentiation into Th17 cells; their differentiation into Treg cells as well as Th1 and Th2 cells was lesser than that of wild-type cells. Rap1-deficient naïve CD4+ T cells were found to exhibit the defective nuclear translocation of NFAT and formation of actin foci in response to TCR engagement. These data suggest that Rap1 amplifies the TCR signaling required for Treg-mediated control of intestinal colitogenic Th17 responses.
Assuntos
Colite , Células Th17 , Proteínas rap1 de Ligação ao GTP , Animais , Diferenciação Celular , Colite/metabolismo , Colite/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Proteínas rap1 de Ligação ao GTP/genéticaRESUMO
Alkylating agents and irradiation induce testicular damage, which results in prolonged azoospermia. Even very low doses of radiation can significantly impair testis function. However, re-irradiation is an effective strategy for locally targeted treatments and the pain response and has seen important advances in the field of radiation oncology. At present, little is known about the relationship between the harmful effects and accumulated dose of irradiation derived from continuous low-dose radiation exposure. In this study, we examined the levels of mRNA transcripts encoding markers of 13 markers of germ cell differentiation and 28 Sertoli cell-specific products in single- and re-irradiated mice. Our results demonstrated that re-irradiation induced significantly decreased testicular weights with a significant decrease in germ cell differentiation mRNA species (Spo11, Tnp1, Gfra1, Oct4, Sycp3, Ddx4, Boll, Crem, Prm1, and Acrosin). In the 13 Sertoli cell-specific mRNA species decreased upon irradiation, six mRNA species (Claudin-11,Espn, Fshr, GATA1, Inhbb, and Wt1) showed significant differences between single- and re-irradiation. At the same time, different decreases in Sertoli cell-specific mRNA species were found in single-irradiation (Aqp8, Clu, Cst12, and Wnt5a) and re-irradiation (Tjp1, occludin,ZO-1, and ZO-2) mice. These results indicate that long-term aspermatogenesis may differ after single- and re-irradiated treatment.
Assuntos
Regulação da Expressão Gênica/efeitos da radiação , RNA Mensageiro/metabolismo , Reirradiação/métodos , Células de Sertoli/metabolismo , Espermatogênese , Testículo/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Células de Sertoli/efeitos da radiação , Testículo/efeitos da radiaçãoRESUMO
Pressure ulcers (PUs) are increasing with aging worldwide, but there is no effective causal therapy. Although mesenchymal stem cells (MSCs) promote cutaneous wound healing, the effects of the conditioned medium (CM) of MSCs on cutaneous PU formation induced by ischemia-reperfusion injury have been poorly investigated. To address this issue, herein, we first established an immortalized stem cell line from human exfoliated deciduous teeth (SHED). This cell line was revealed to have superior characteristics in that it grows infinitely and vigorously, and stably and consistently secretes a variety of cytokines. Using the CM obtained from the immortalized SHED cell line, we investigated the therapeutic potential on a cutaneous ischemia-reperfusion mouse model for PU formation using two magnetic plates. This is the first study to show that CM from immortalized SHEDs exerts therapeutic effects on PU formation by promoting angiogenesis and oxidative stress resistance through vascular endothelial growth factor and hepatocyte growth factor. Thus, the CM of MSCs has potent therapeutic effects, whereas these therapies have not been implemented in human medicine. To try to meet the regulatory requirements for manufacturing and quality control as much as possible, it is necessary to produce CM that is consistently safe and effective. The immortalization of stem cells could be one of the breakthroughs to meet the regulatory requirements and consequently open up a novel avenue to create a novel type of cell-free regenerative medicine, although further investigation into the quality control is warranted.
Assuntos
Úlcera por Pressão , Camundongos , Animais , Humanos , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Úlcera por Pressão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco/metabolismo , Dente DecíduoRESUMO
BACKGROUND: The tyrosinase inhibitor rhododendrol (RD), used as a skin whitening agent, reportedly has the potential to induce leukoderma. OBJECTIVE: Although an immune response toward melanocytes was demonstrated to be involved in leukoderma, the molecular mechanism is not fully understood. METHODS: We hypothesized that if RD is a pro-hapten and tyrosinase-oxidized RD metabolites are melanocyte-specific sensitizers, the sensitizing process could be reproduced by the human cell line activation test (h-CLAT) cocultured with melanocytes (h-CLATw/M) composed of human DC THP-1 cells and melanoma SK-MEL-37 cells. Cell surface expression, ROS generation and ATP release, mRNA expression, and the effects of several inhibitors were examined. RESULTS: When RD was added to the h-CLATw/M, the expression of cell-surface CD86 and IL-12 mRNA was greatly enhanced in THP-1 cells compared with those in the h-CLAT. The rapid death of melanoma cells was induced, with ROS generation and ATP release subsequently being greatly enhanced, resulting in the cooperative upregulation of CD86 and IL-12. Consistent with those observations, an ROS inhibitor, ATP receptor P2X7 antagonist, or PERK inhibitor antagonized the upregulation. CD86 upregulation was similarly observed with another leukoderma-inducible tyrosinase inhibitor, raspberry ketone, but not with the leukoderma noninducible skin-whitening agents ascorbic acid and tranexamic acid. CONCLUSION: RD is a pro-hapten sensitizer dependent on tyrosinase that induces ROS generation and ATP release from melanocytes for CD86 and IL-12 upregulation in DCs, possibly leading to the generation of tyrosinase-specific cytotoxic T lymphocytes. The coculture system h-CLATw/M may be useful for predicting the sensitizing potential to induce leukoderma.
Assuntos
Antígeno B7-2 , Butanóis , Hipopigmentação , Preparações Clareadoras de Pele , Humanos , Trifosfato de Adenosina/metabolismo , Técnicas de Cocultura , Hipopigmentação/metabolismo , Interleucina-12/metabolismo , Melanócitos/metabolismo , Melanoma/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Preparações Clareadoras de Pele/farmacologia , Células THP-1/efeitos dos fármacos , Regulação para Cima , Antígeno B7-2/metabolismo , Butanóis/farmacologiaRESUMO
To clarify the effect of collagen addition to transplanted adipose tissue on angiogenesis, cell proliferation and tissue remodelling process and reveal whether collagen addition contributes to improving transplanted adipose tissue engraftment in rats. Adipose tissue was harvested from the inguinal and injected into the back of the rat, in addition to collagen. Engraftment tissue was harvested, semi-quantitatively evaluated and underwent haematoxylin and eosin or Perilipin staining. Moreover, we evaluated viable adipocyte counts and neovascularisation. Macrophages were evaluated using flow cytometry, and the adiponectin or vascular endothelial growth factor (VEGF) mRNA was detected using real-time polymerase chain reaction. By collagen addition to transplanted adipose tissue, higher engraftment rate semi-quantitatively and a greater number of new blood vessels histologically were identified. Perilipin staining revealed a higher adipocyte number. The total cell, M1 macrophage and M2 macrophage count were higher. There was increased adiponectin mRNA significantly at week 4 compared to that at week 1 after transplantation. Note that the expression levels of VEGF mRNA increased. In rats, adding collagen enhanced cell proliferation, induced M2 macrophages, which are involved in wound healing, and promoted adipocytes and neovascularisation. Therefore, collagen addition to transplanted adipose tissue could increase the engraftment rate of adipose tissue.
Assuntos
Adiponectina , Fator A de Crescimento do Endotélio Vascular , Adiponectina/metabolismo , Tecido Adiposo/patologia , Animais , Proliferação de Células , Colágeno/metabolismo , Macrófagos/metabolismo , Perilipinas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and ß-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another ß-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.
Assuntos
Calnexina/fisiologia , Inflamação/metabolismo , Interleucinas/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Chaperonas Moleculares/fisiologia , Dimerização , Glicoproteínas/química , Humanos , Interleucinas/química , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Subunidades Proteicas , Receptores de Interleucina/químicaRESUMO
BACKGROUND: Intravitreal injections of anti-vascular endothelial growth factor are commonly used to treat macular diseases, including diabetic macular edema. Anti-vascular endothelial growth factor drugs can enter the systemic circulation after intravitreal injections and appear to suppress circulating vascular endothelial growth factor levels. However, whether this can cause any systemic adverse events remains unknown. CASE PRESENTATION: A 70-year-old Japanese man diagnosed with diabetic macular edema in both eyes was treated with anti-vascular endothelial growth factor intravitreal injections. One month after receiving two intravitreal injections of aflibercept 1 week apart for diabetic macular edema in both eyes, he complained of a severe acute headache. The patient was diagnosed with hypertensive cerebral hemorrhage of the occipital lobe based on an elevated blood pressure of 195/108 mmHg and the results of computed tomography and magnetic resonance imaging of his brain. The patient was treated with an intravenous injection of nicardipine hydrochloride to lower his systemic blood pressure. Two days after the stroke, the patient began oral treatment with 80 mg/day telmisartan, which was continued for 3 days, and the telmisartan dose was reduced to 40 mg/day thereafter. His blood pressure promptly dropped to 130/80 mmHg, and his severe headache disappeared. One year after the cerebrovascular stroke, the telmisartan was discontinued because his blood pressure stabilized at a normal level. His plasma vascular endothelial growth factor levels were measured via specific enzyme-linked immunosorbent assay before and after the intravitreal injections of aflibercept. Immediately before the injections, the vascular endothelial growth factor level was 28 pg/ml, but it rapidly fell below the detection limit within 1 week, where it remained for over 2 months. Two days before the cerebral hemorrhage, his plasma vascular endothelial growth factor level was below the detection limit, and 2 months later after the stroke, his plasma vascular endothelial growth factor level recovered to 41 pg/ml. CONCLUSION: This case suggests that hypertension and resultant cerebral hemorrhage can occur in patients with diabetic macular edema when plasma vascular endothelial growth factor levels are systemically decreased below the detection limit for a prolonged time after local injections of anti-vascular endothelial growth factor agents into the vitreous cavity. Therefore, severely reduced plasma vascular endothelial growth factor levels could be a higher risk factor to develop generally infrequent stroke. Ophthalmologists should be aware of possible severe reduction of plasma vascular endothelial growth factor levels and resultant increase in blood pressure after intravitreal injections of an anti-vascular endothelial growth factor drug. If the plasma vascular endothelial growth factor levels could be monitored more easily and quickly during the treatment, it would help to prevent adverse events.