Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509728

RESUMO

Capturing images of the nuclear dynamics within live cells is an essential technique for comprehending the intricate biological processes inherent to plant cell nuclei. While various methods exist for imaging nuclei, including combining fluorescent proteins and dyes with microscopy, there is a dearth of commercially available dyes for live-cell imaging. In Arabidopsis thaliana, we discovered that nuclei emit autofluorescence in the near-infrared (NIR) range of the spectrum and devised a non-invasive technique for the visualization of live cell nuclei using this inherent NIR autofluorescence. Our studies demonstrated the capability of the NIR imaging technique to visualize the dynamic behavior of nuclei within primary roots, root hairs, and pollen tubes, which are tissues that harbor a limited number of other organelles displaying autofluorescence. We further demonstrated the applicability of NIR autofluorescence imaging in various other tissues by incorporating fluorescence lifetime imaging techniques. Nuclear autofluorescence was also detected across a wide range of plant species, enabling analyses without the need for transformation. The nuclear autofluorescence in the NIR wavelength range was not observed in animal or yeast cells. Genetic analysis revealed that this autofluorescence was caused by the phytochrome protein. Our studies demonstrated that nuclear autofluorescence imaging can be effectively employed not only in model plants but also for studying nuclei in non-model plant species.

2.
Proc Natl Acad Sci U S A ; 119(42): e2207558119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215460

RESUMO

SWEET sucrose transporters play important roles in the allocation of sucrose in plants. Some SWEETs were shown to also mediate transport of the plant growth regulator gibberellin (GA). The close physiological relationship between sucrose and GA raised the questions of whether there is a functional connection and whether one or both of the substrates are physiologically relevant. To dissect these two activities, molecular dynamics were used to map the binding sites of sucrose and GA in the pore of SWEET13 and predicted binding interactions that might be selective for sucrose or GA. Transport assays confirmed these predictions. In transport assays, the N76Q mutant had 7x higher relative GA3 activity, and the S142N mutant only transported sucrose. The impaired pollen viability and germination in sweet13;14 double mutants were complemented by the sucrose-selective SWEET13S142N, but not by the SWEET13N76Q mutant, indicating that sucrose is the physiologically relevant substrate and that GA transport capacity is dispensable in the context of male fertility. Therefore, GA supplementation to counter male sterility may act indirectly via stimulating sucrose supply in male sterile mutants. These findings are also relevant in the context of the role of SWEETs in pathogen susceptibility.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Proteínas de Transporte de Monossacarídeos , Reguladores de Crescimento de Plantas/metabolismo , Sacarose/metabolismo
3.
Plant Cell Physiol ; 62(8): 1259-1268, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34233356

RESUMO

Fluorescent probes are powerful tools for visualizing cellular and subcellular structures, their dynamics and cellular molecules in living cells and enable us to monitor cellular processes in a spatiotemporal manner within complex and crowded systems. In addition to popular fluorescent proteins, a wide variety of small-molecule dyes have been synthesized through close association with the interdisciplinary field of chemistry and biology, ranging from those suitable for labeling cellular compartments such as organelles to those for labeling intracellular biochemical and biophysical processes and signaling. In recent years, self-labeling technologies including the SNAP-tag system have allowed us to attach these dyes to cellular domains or specific proteins and are beginning to be employed in plant studies. In this mini review, we will discuss the current range of synthetic fluorescent probes that have been exploited for live-cell imaging and the recent advances in the application that enable genetical tagging of synthetic probes in plant research.


Assuntos
Corantes Fluorescentes , Imageamento Tridimensional/métodos , Microscopia Intravital/métodos , Microscopia de Fluorescência/métodos , Células Vegetais/fisiologia
4.
Plant Cell ; 33(2): 420-438, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33866370

RESUMO

Plants take up and translocate nutrients through transporters. In Arabidopsis thaliana, the borate exporter BOR1 acts as a key transporter under boron (B) limitation in the soil. Upon sufficient-B supply, BOR1 undergoes ubiquitination and is transported to the vacuole for degradation, to avoid overaccumulation of B. However, the mechanisms underlying B-sensing and ubiquitination of BOR1 are unknown. In this study, we confirmed the lysine-590 residue in the C-terminal cytosolic region of BOR1 as the direct ubiquitination site and showed that BOR1 undergoes K63-linked polyubiquitination. A forward genetic screen identified that amino acid residues located in vicinity of the substrate-binding pocket of BOR1 are essential for the vacuolar sorting. BOR1 variants that lack B-transport activity showed a significant reduction of polyubiquitination and subsequent vacuolar sorting. Coexpression of wild-type (WT) and a transport-defective variant of BOR1 in the same cells showed degradation of the WT but not the variant upon sufficient-B supply. These findings suggest that polyubiquitination of BOR1 relies on its conformational transition during the transport cycle. We propose a model in which BOR1, as a B transceptor, directly senses the B concentration and promotes its own polyubiquitination and vacuolar sorting for quick and precise maintenance of B homeostasis.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Boro/farmacologia , Proteólise/efeitos dos fármacos , Ubiquitinação , Sequência de Aminoácidos , Substituição de Aminoácidos , Antiporters/química , Proteínas de Arabidopsis/química , Sítios de Ligação , Testes Genéticos , Proteínas de Fluorescência Verde/metabolismo , Lisina/metabolismo , Modelos Biológicos , Poliubiquitina/metabolismo , Transporte Proteico/efeitos dos fármacos , Prótons , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ubiquitinação/efeitos dos fármacos , Vacúolos/metabolismo
5.
Biol Cell ; 113(5): 264-269, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33443774

RESUMO

BACKGROUND INFORMATION: Plants use transporters polarly localised in the plasma membrane for the directional transport of nutrients. The boric acid/borate (B) exporter BOR1 is localised polarly in the inner lateral domain of the plasma membrane in various root cells for efficient translocation of B under B limitation. With a high B supply, BOR1 is ubiquitinated and transported to vacuoles for degradation. The polar localisation and vacuolar targeting of BOR1 are maintained by different endocytosis mechanisms. RESULTS: We demonstrated that one of the most utilised inhibitors in endosomal recycling, brefeldin A (BFA), inhibits the polar localisation of BOR1. BFA inhibits a subset of guanine-nucleotide exchange factors (ARF-GEFs), regulators of vesicle formation. Using a transgenic line expressing BFA-resistant engineered GNOM, we identified GNOM as the key ARF-GEF in endocytosis and maintenance of the polar localisation of BOR1. CONCLUSIONS AND SIGNIFICANCE: We found that BFA inhibits the polar localisation of BOR1 by inhibiting GNOM activity. Our results suggest that GNOM-dependent endocytosis contributes to the maintenance of the polar localisation of BOR1 under B limitation. We propose a model of BOR1 transcytosis initiated from GNOM-dependent endocytosis.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Brefeldina A/metabolismo , Endocitose , Inibidores da Síntese de Proteínas/metabolismo
6.
Methods Mol Biol ; 2200: 303-322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33175384

RESUMO

Fluorescent biosensors are powerful tools for tracking analytes or cellular processes in live organisms and allowing visualization of the spatial and temporal dynamics of cellular regulators. Fluorescent protein (FP)-based biosensors are extensively employed due to their high selectivity and low invasiveness. A variety of FP-based biosensors have been engineered and applied in plant research to visualize dynamic changes in pH, redox state, concentration of molecules (ions, sugars, peptides, ATP, reactive oxygen species, and phytohormones), and activity of transporters. In this chapter, we briefly summarize reported uses of FP-based biosensors in planta and show simple methods to monitor the dynamics of intracellular Ca2+ in Arabidopsis thaliana using a ratiometric genetically encoded Ca2+ indicator, MatryoshCaMP6s.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Técnicas Biossensoriais , Cálcio/metabolismo , Proteínas Luminescentes/metabolismo , Imagem Óptica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Luminescentes/genética
7.
Plant J ; 105(2): 542-557, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33231903

RESUMO

Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes.


Assuntos
Técnicas Biossensoriais , Reguladores de Crescimento de Plantas/análise , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Técnicas Biossensoriais/métodos , Brassinosteroides/análise , Brassinosteroides/metabolismo , Ciclopentanos/análise , Ciclopentanos/metabolismo , Citocininas/análise , Citocininas/metabolismo , Etilenos/análise , Etilenos/metabolismo , Corantes Fluorescentes , Giberelinas/análise , Giberelinas/metabolismo , Compostos Heterocíclicos com 3 Anéis/análise , Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Lactonas/análise , Lactonas/metabolismo , Oxilipinas/análise , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Plantas/química , Plantas/metabolismo
8.
Elife ; 92020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795387

RESUMO

Receptor endocytosis is important for signal activation, transduction, and deactivation. However, how a receptor interprets conflicting signals to adjust cellular output is not clearly understood. Using genetic, cell biological, and pharmacological approaches, we report here that ERECTA-LIKE1 (ERL1), the major receptor restricting plant stomatal differentiation, undergoes dynamic subcellular behaviors in response to different EPIDERMAL PATTERNING FACTOR (EPF) peptides. Activation of ERL1 by EPF1 induces rapid ERL1 internalization via multivesicular bodies/late endosomes to vacuolar degradation, whereas ERL1 constitutively internalizes in the absence of EPF1. The co-receptor, TOO MANY MOUTHS is essential for ERL1 internalization induced by EPF1 but not by EPFL6. The peptide antagonist, Stomagen, triggers retention of ERL1 in the endoplasmic reticulum, likely coupled with reduced endocytosis. In contrast, the dominant-negative ERL1 remained dysfunctional in ligand-induced subcellular trafficking. Our study elucidates that multiple related yet unique peptides specify cell fate by deploying the differential subcellular dynamics of a single receptor.


Assuntos
Epiderme Vegetal/citologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Transdução de Sinais , Diferenciação Celular , Endocitose , Proteínas de Plantas/genética , Estômatos de Plantas/citologia , Sinais Direcionadores de Proteínas/genética
9.
Plant Cell ; 32(10): 3081-3094, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763980

RESUMO

Synthetic chemical fluorescent dyes promise to be useful for many applications in biology. Covalent, targeted labeling, such as with a SNAP-tag, uses synthetic dyes to label specific proteins in vivo for studying processes such as endocytosis or for imaging via super-resolution microscopy. Despite its potential, such chemical tagging has not been used effectively in plants. A major drawback has been the limited knowledge regarding cell wall and membrane permeability of the available synthetic dyes. Of 31 synthetic dyes tested here, 23 were taken up into BY-2 cells, while eight were not. This creates sets of dyes that can serve to measure endocytosis. Three of the dyes that were able to enter the cells, SNAP-tag ligands of diethylaminocoumarin, tetramethylrhodamine, and silicon-rhodamine 647, were used to SNAP-tag α-tubulin. Successful tagging was verified by live cell imaging and visualization of microtubule arrays in interphase and during mitosis in Arabidopsis (Arabidopsis thaliana) seedlings. Fluorescence activation-coupled protein labeling with DRBG-488 was used to observe PIN-FORMED2 (PIN2) endocytosis and delivery to the vacuole as well as preferential delivery of newly synthesized PIN2 to the actively forming cell plate during mitosis. Together, the data demonstrate that specific self-labeling of proteins can be used effectively in plants to study a wide variety of cellular and biological processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Corantes Fluorescentes/farmacocinética , Células Vegetais/química , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Endocitose , Corantes Fluorescentes/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/química , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Rodaminas/química , Rodaminas/farmacocinética , Plântula , Imagem com Lapso de Tempo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
10.
Methods Mol Biol ; 2177: 1-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32632800

RESUMO

Plants take up inorganic nutrients from the soil by transport proteins located in the plasma membrane of root cells. Boron (B) is an essential element for plant growth; it taken up and translocated by boric acid channels such as NIP5;1 and borate exporters such as BOR1 in Arabidopsis. NIP5;1 and BOR1 are localized to the plasma membrane of various root cells in polar manners toward soil- and stele-side, respectively, for efficient transport of B. In response to elevated B concentration, BOR1 undergoes vacuolar sorting for degradation to avoid accumulation of B to a toxic level in tissues. The polar localization and vacuolar sorting of the transport proteins are regulated through differential mechanisms of endocytosis and intracellular trafficking. In this chapter, we describe methods for quantitative live-cell imaging of GFP-NIP5;1 and BOR1-GFP as markers for the polar and vacuolar trafficking.


Assuntos
Antiporters/genética , Aquaporinas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Ácidos Bóricos/metabolismo , Antiporters/metabolismo , Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Raízes de Plantas/metabolismo , Proteínas Recombinantes/metabolismo
11.
Plant Physiol ; 179(4): 1569-1580, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710051

RESUMO

Boron (B) is an essential element in plants but is toxic when it accumulates to high levels. In root cells of Arabidopsis (Arabidopsis thaliana), the borate exporter BOR1 is polarly localized in the plasma membrane toward the stele side for directional transport of B. Upon high-B supply, BOR1 is rapidly internalized and degraded in the vacuole. The polar localization and B-induced vacuolar sorting of BOR1 are mediated by endocytosis from the plasma membrane. To dissect the endocytic pathways mediating the polar localization and vacuolar sorting, we investigated the contribution of the clathrin adaptor protein, ADAPTOR PROTEIN2 (AP2) complex, to BOR1 trafficking. In the mutants lacking µ- or σ-subunits of the AP2 complex, the polar localization and constitutive endocytosis of BOR1 under low-B conditions were dramatically disturbed. A coimmunoprecipitation assay showed association of the AP2 complex with BOR1, while it was independent of YxxΦ sorting motifs, which are in a cytosolic loop of BOR1. A yeast two-hybrid assay supported the interaction of the AP2 complex µ-subunit with the C-terminal tail but not with the YxxΦ motifs in the cytosolic loop of BOR1. Intriguingly, lack of the AP2 subunit did not affect the B-induced rapid internalization/vacuolar sorting of BOR1. Consistent with defects in the polar localization, the AP2 complex mutants showed hypersensitivity to B deficiency. Our results indicate that AP2-dependent endocytosis maintains the polar localization of BOR1 to support plant growth under low-B conditions, whereas the B-induced vacuolar sorting of BOR1 is mediated through an AP2-independent endocytic pathway.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Boro/metabolismo , Endocitose/fisiologia , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares/fisiologia , Antiporters/análise , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido
12.
Plant Physiol ; 178(3): 1269-1283, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266747

RESUMO

Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Bóricos/metabolismo , Gametogênese Vegetal/genética , Pólen/genética , Aquaporinas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Boro/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Filogenia , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão
13.
Plant J ; 93(6): 992-1006, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356222

RESUMO

Ammonium influx into plant roots via the high-affinity transport system (HATS) is down-modulated under elevated external ammonium, preventing ammonium toxicity. In ammonium-fed Arabidopsis, ammonium transporter 1 (AMT1) trimers responsible for HATS activity are allosterically inactivated in a dose-dependent manner via phosphorylation of the conserved threonine at the carboxyl-tail by the calcineurin B-like protein 1-calcineurin B-like protein-interacting protein kinase 23 complex and other yet unidentified protein kinases. Using transcriptome and reverse genetics in ammonium-preferring rice, we revealed the role of the serine/threonine/tyrosine protein kinase gene OsACTPK1 in down-modulation of HATS under sufficient ammonium. In wild-type roots, ACTPK1 mRNA and protein accumulated dose-dependently under sufficient ammonium. To determine the function of ACTPK1, two independent mutants lacking ACTPK1 were produced by retrotransposon Tos17 insertion. Compared with segregants lacking insertions, the two mutants showed decreased root growth and increased shoot growth under 1 mm ammonium due to enhanced ammonium acquisition, via aberrantly high HATS activity, and use. Furthermore, introduction of OsACTPK1 cDNA fused to the synthetic green fluorescence protein under its own promoter complemented growth and the HATS influx, and suggested plasma membrane localization. Root cellular expression of OsACTPK1 also overlapped with that of ammonium-induced OsAMT1;1 and OsAMT1;2. Meanwhile, threonine-phosphorylated AMT1 levels were substantially decreased in roots of ACTPK1-deficient mutants grown under sufficient ammonium. Bimolecular fluorescence complementation assay further confirmed interaction between ACTPK1 and AMT1;2 at the cell plasma membrane. Overall, these findings suggest that ACTPK1 directly phosphorylates and inactivates AMT1;2 in rice seedling roots under sufficient ammonium.


Assuntos
Compostos de Amônio/metabolismo , Perfilação da Expressão Gênica , Oryza/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Plântula/genética , Transporte Biológico/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
14.
Front Plant Sci ; 8: 1951, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204148

RESUMO

Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

15.
Plant Cell ; 29(4): 824-842, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28341806

RESUMO

Boron uptake in Arabidopsis thaliana is mediated by nodulin 26-like intrinsic protein 5;1 (NIP5;1), a boric acid channel that is located preferentially on the soil side of the plasma membrane in root cells. However, the mechanism underlying this polar localization is poorly understood. Here, we show that the polar localization of NIP5;1 in epidermal and endodermal root cells is mediated by the phosphorylation of Thr residues in the conserved TPG (ThrProGly) repeat in the N-terminal region of NIP5;1. Although substitutions of Ala for three Thr residues in the TPG repeat did not affect lateral diffusion in the plasma membrane, these substitutions inhibited endocytosis and strongly compromised the polar localization of GFP-NIP5;1. Consistent with this, the polar localization was compromised in µ subunit mutants of the clathrin adaptor AP2. The Thr-to-Ala substitutions did not affect the boron transport activity of GFP-NIP5;1 in Xenopus laevis oocytes but did inhibit the ability to complement boron translocation to shoots and rescue growth defects in nip5;1-1 mutant plants under boron-limited conditions. These results demonstrate that the polar localization of NIP5;1 is maintained by clathrin-mediated endocytosis, is dependent on phosphorylation in the TPG repeat, and is necessary for the efficient transport of boron in roots.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Boro/metabolismo , Endocitose/fisiologia , Raízes de Plantas/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Endocitose/genética
16.
Plant Cell Physiol ; 57(9): 1985-2000, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27449211

RESUMO

Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Antiporters/genética , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Boro/metabolismo , Boro/farmacologia , Dinaminas/genética , Endocitose/efeitos dos fármacos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Proteína Vermelha Fluorescente
17.
J Plant Res ; 127(1): 57-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24338062

RESUMO

After the accident of the Fukushima 1 Nuclear Power Plant in March 2011, radioactive cesium was released and paddy fields in a wide area including Fukushima Prefecture were contaminated. To estimate the levels of radioactive Cs accumulation in rice produced in Fukushima, it is crucial to obtain the actual data of Cs accumulation levels in rice plants grown in the actual paddy field in Fukushima City. We herein conducted a two-year survey in 2011 and 2012 of radioactive and non-radioactive Cs accumulation in rice using a number of rice cultivars grown in the paddy field in Fukushima City. Our study demonstrated a substantial variation in Cs accumulation levels among the cultivars of rice.


Assuntos
Radioisótopos de Césio/metabolismo , Acidente Nuclear de Fukushima , Oryza/metabolismo , Solo/química , Agricultura , Biodegradação Ambiental , Isótopos de Césio/análise , Isótopos de Césio/metabolismo , Radioisótopos de Césio/análise , Japão , Centrais Nucleares , Oryza/química , Caules de Planta/química , Caules de Planta/metabolismo , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/metabolismo , Especificidade da Espécie
18.
Mol Microbiol ; 90(2): 415-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24015831

RESUMO

Temperate phages can integrate their genomes into a specific region of a host chromosome to produce lysogens (prophage). During genome insertion, prophages may interrupt the gene coding sequence. In Bacillus subtilis, the sigma factor gene sigK is interrupted by a 48 kb prophage-like element. sigK is a composite coding sequence from two partial genes during sporulation. For over two decades, however, no further examples of DNA element-mediated gene reconstitution other than sigK have been identified in spore formers. Here we report that the gene for dipicolinic acid (DPA) synthetase ß subunit spoVFB in B. weihenstephanensis KBAB4 is interrupted by a prophage-like element named vfbin. DPA is synthesized in the mother cell and required for maintaining spore dormancy. We found that spoVFB was a composite coding sequence generated in the mother cell via chromosomal rearrangement that excised vfbin. Furthermore, vfbin caused excision after phage-inducer treatment, but vfbin appeared to be defective as a prophage. We also found various spore-forming bacteria in which sporulation-related genes were disrupted by prophage-like DNA elements. These results demonstrate the first example of a similar mechanism that affects a sporulation gene other than sigK and suggest that this prophage-mediated DNA rearrangement is a common phenomenon in spore-forming bacteria.


Assuntos
Bacillus/fisiologia , Rearranjo Gênico , Genes Bacterianos , Oxirredutases/genética , Prófagos/genética , Fator sigma/genética , Esporos Bacterianos/fisiologia , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Geobacillus/genética , Geobacillus/fisiologia , Fases de Leitura Aberta , Oxirredutases/metabolismo , Fator sigma/metabolismo , Esporos Bacterianos/genética
19.
Plant Signal Behav ; 7(1): 46-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22301967

RESUMO

Boron (B) is essential for plants, but is toxic in excess. Plants have to strictly regulate the uptake and translocation of B. In Arabidopsis thaliana root cells, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, localize to the outer (facing soil) and inner plasma membrane domains, respectively, under B limitation. The opposite polar localizations of the importer and exporter would enable plant roots to transport B efficiently towards the xylem. In addition, accumulation of the B transporters is controlled by B conditions. When plants are shifted from low to high B conditions, NIP5;1 transcript accumulation is down-regulated through mRNA degradation. The BOR1 protein is transported to the trans-Golgi network/early endosome and multivesicular body and finally degraded in the vacuole. We have recently shown that both the polar localization and the endocytic degradation of BOR1 are controlled by at least two tyrosine residues in a large loop located in the cytosol. We also showed that ubiquitination is required for the endocytic degradation of BOR1. Here, we analyzed possible involvement of an additional tyrosine residue (Y414) in the loop region and discuss the pathway of the BOR1 trafficking for polar localization and endocytic degradation of BOR1.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Endocitose , Tirosina/metabolismo , Sequência de Aminoácidos , Antiporters/química , Antiporters/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dados de Sequência Molecular , Transporte Proteico , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA