Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(42): 49500-49510, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819915

RESUMO

Since high-purity blue- and white-light emitters are an indispensable group of materials for the creation of next-generation optical devices, a number of light-emitting materials have been developed from both inorganic and organic synthetic chemistry. However, these synthetic chemical methods are far from the perspective of green chemistry due to the multistep synthetic process and the use of toxic reagents and elements. Herein, we demonstrate that the introduction of simple unsubstituted anthracenes into zeolite-like pores can create a wide variety of luminescent materials, from ultrapure blue luminescent materials (emission peak at 465 nm with a full width of half-maximum of 8.57 nm) to efficient white luminescent materials [CIE coordination at (0.31, 0.33) with a quantum efficiency of 11.0% under 350 nm excitation light]. The method for rational design of the luminescent materials consists of the following two key strategies: one is molecular orbital confinement of the anthracene molecules in the zeolite nanocavity for regulating the molecular coordination associated with photoexcitation and emission and the other is the interaction of unsubstituted anthracenes with extra-framework aluminum species to stabilize the 2-dehydride anthracene cation in the zeolite cavity.

2.
Sci Adv ; 9(33): eadi1744, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595044

RESUMO

Microwave (MW)-driven catalytic systems are attracting attention not only as an aggressive electrification strategy of the chemical industry but also as creating a unique catalytic reaction field that conventional equilibrium heating cannot achieve. This study unlocked direct and selective heating of single alkali metal cations in the pores of aluminosilicate zeolites under MW. Selectively heated Cs+ cations in FAU zeolite exhibited selective CH4 combustion performance, that is, COx generation at the heated Cs+ cations selectively occurred while side reactions in the low-temperature gas phase were suppressed. The Cs-O pair distribution function revealed by synchrotron-based in situ x-ray total scattering gave us direct evidence of peculiar displacement induced by MW, which was consistent with the results of molecular dynamics simulation mimicking MW heating. The concept of selective monoatomic heating by MW is expected to open a next stage in "microwave catalysis" science by providing physicochemical insights into "microwave effects."

3.
Sci Adv ; 8(25): eabo3093, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731864

RESUMO

Small-pore zeolites are gaining increasing attention owing to their superior catalytic performance. Despite being critical for the catalytic activity and lifetime, postsynthetic tuning of bulk Si/Al ratios of small-pore zeolites has not been achieved with well-preserved crystallinity because of the limited mass transfer of aluminum species through narrow micropores. Here, we demonstrate a postsynthetic approach to tune the composition of small-pore zeolites using a previously unexplored strategy named pore-opening migration process (POMP). Acid treatment assisted by stabilization of the zeolite framework by organic cations in pores is proven to be successful for the removal of Al species from zeolite via POMP. Furthermore, the dealuminated AFX zeolite is treated via defect healing, which yields superior hydrothermal stability against severe steam conditions. Our findings could facilitate industrial applications of small-pore zeolites via aluminum content control and defect healing and could elucidate the structural reconstruction and arrangement processes for inorganic microporous materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA