Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Pigment Cell Melanoma Res ; 37(2): 276-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37920136

RESUMO

Epidermal melanocytes are continuously exposed to sunlight-induced reactive oxygen species (ROS) and oxidative stress generated during the synthesis of melanin. Therefore, they have developed mechanisms that maintain normal redox homeostasis. Cytoglobin (CYGB), a ubiquitously expressed intracellular iron hexacoordinated globin, exhibits antioxidant activity and regulates the redox state of mammalian cells through its activities as peroxidase and nitric oxide (NO) dioxygenase. We postulated that CYGB functions in the melanogenic process as a regulator that maintains oxidative stress within a physiological level. This was examined by characterizing normal human melanocytes with the knockdown (KD) of CYGB using morphological and molecular biological criteria. CYGB-KD cells were larger, had more dendrites, and generated more melanin granules in the advanced stages of melanogenesis than control cells. The expression levels of major melanogenesis-associated genes and proteins were higher in CYGB-KD melanocytes than in wild type (WT) cells. As expected, CYGB-KD melanocytes generated more ROS and NO than WT cells. In conclusion, CYGB physiologically contributes to maintaining redox homeostasis in the melanogenic activity of normal melanocytes by controlling the intracellular levels of ROS and NO.


Assuntos
Melaninas , Melanogênese , Animais , Humanos , Citoglobina/genética , Citoglobina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Oxirredução , Mamíferos/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G219-G230, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719093

RESUMO

In cirrhosis, several molecular alterations such as resistance to apoptosis could accelerate carcinogenesis. Recently, mechanotransduction has been attracting attention as one of the causes of these disturbances. In patients with cirrhosis, the serum sodium levels progressively decrease in the later stage of cirrhosis, and hyponatremia leads to serum hypo-osmolality. Since serum sodium levels in patients with cirrhosis with liver cancer are inversely related to cancer's number, size, stage, and cumulative survival, we hypothesized that hypo-osmolality-induced mechanotransduction under cirrhotic conditions might contribute to oncogenesis and/or progression of hepatocellular carcinoma (HCC). In this study, we adjusted osmosis of culture medium by changing the sodium chloride concentration and investigated the influence of hypotonic conditions on the apoptosis resistance of an HCC cell line, HepG2, using a serum-deprivation-induced apoptosis model. By culturing the cells in a serum-free medium, the levels of an antiapoptotic protein Bcl-2 were downregulated. In contrast, the hypotonic conditions caused apoptosis resistance by upregulation of Bcl-2. Next, we examined which pathway was involved in the apoptosis resistance. Hypotonic conditions enhanced AKT signaling, and constitutive activation of AKT in HepG2 cells led to upregulation of Bcl-2. Moreover, we revealed that the enhancement of AKT signaling was caused by intracellular calcium influx via a mechanosensor, TRPV2. Our findings suggested that hyponatremia-induced serum hypotonic in patients with cirrhosis promoted the progression of hepatocellular carcinoma.NEW & NOTEWORTHY Our study first revealed that hypo-osmolarity-induced mechanotransduction enhanced calcium-mediated AKT signaling via TRPV2 activation, resulting in contributing to apoptosis resistance. The finding indicates a possible view that liver cirrhosis-induced hyponatremia promotes hepatocellular carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Hiponatremia , Neoplasias Hepáticas , Humanos , Apoptose , Cálcio/metabolismo , Carcinogênese , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Mecanotransdução Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sódio/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
3.
Antioxid Redox Signal ; 38(7-9): 463-479, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36112670

RESUMO

Aims: Cell-cell interactions between hepatocytes (Hep) and other liver cells are key to maintaining liver homeostasis. Cytoglobin (CYGB), expressed exclusively by hepatic stellate cells (HSC), is essential in mitigating mitochondrial oxidative stress. CYGB absence causes Hep dysfunction and evokes hepatocarcinogenesis through an elusive mechanism. CYGB deficiency is speculated to hinder nitric oxide dioxygenase (NOD) activity, resulting in the elevated formation and release of nitric oxide (NO). Hence, we hypothesized that NO accumulation induced by the loss of NOD activity in CYGB-deficient HSC could adversely affect mitochondrial function in Hep, leading to disease progression. Results: NO, a membrane-permeable gas metabolite overproduced by CYGB-deficient HSC, diffuses into the neighboring Hep to reversibly inhibit cytochrome c oxidase (CcO), resulting in the suppression of respiratory function in an electron transport chain (ETC). The binding of NO to CcO is proved using purified CcO fractions from Cygb knockout (Cygb-/-) mouse liver mitochondria. Its inhibitory action toward CcO-specific activity is fully reversed by the external administration of oxyhemoglobin chasing away the bound NO. Thus, these findings indicate that the attenuation of respiratory function in ETC causes liver damage through the formation of excessive reactive oxygen species. Treating Cygb-/- mice with an NO synthase inhibitor successfully relieved NO-induced inhibition of CcO activity in vivo. Innovation and Conclusion: Our findings provide a biochemical link between CYGB-absence in HSC and neighboring Hep dysfunction; mechanistically the absence of CYGB in HSC causes mitochondrial dysfunction of Hep via the inhibition of CcO activity by HSC-derived NO. Antioxid. Redox Signal. 38, 463-479.


Assuntos
Células Estreladas do Fígado , Óxido Nítrico , Camundongos , Animais , Citoglobina/metabolismo , Células Estreladas do Fígado/metabolismo , Óxido Nítrico/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Globinas , Hepatócitos/metabolismo
4.
Sci Adv ; 8(39): eabo5525, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170363

RESUMO

Intracellular gap (iGap) formation in liver sinusoidal endothelial cells (LSECs) is caused by the destruction of fenestrae and appears under pathological conditions; nevertheless, their role in metastasis of cancer cells to the liver remained unexplored. We elucidated that hepatotoxin-damaged and fibrotic livers gave rise to LSECs-iGap formation, which was positively correlated with increased numbers of metastatic liver foci after intrasplenic injection of Hepa1-6 cells. Hepa1-6 cells induced interleukin-23-dependent tumor necrosis factor-α (TNF-α) secretion by LSECs and triggered LSECs-iGap formation, toward which their processes protruded to transmigrate into the liver parenchyma. TNF-α triggered depolymerization of F-actin and induced matrix metalloproteinase 9 (MMP9), intracellular adhesion molecule 1, and CXCL expression in LSECs. Blocking MMP9 activity by doxycycline or an MMP2/9 inhibitor eliminated LSECs-iGap formation and attenuated liver metastasis of Hepa1-6 cells. Overall, this study revealed that cancer cells induced LSEC-iGap formation via proinflammatory paracrine mechanisms and proposed MMP9 as a favorable target for blocking cancer cell metastasis to the liver.


Assuntos
Células Endoteliais , Neoplasias Hepáticas , Actinas/metabolismo , Animais , Doxiciclina/metabolismo , Células Endoteliais/metabolismo , Humanos , Interleucina-23/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos , Fator de Necrose Tumoral alfa/metabolismo
5.
J Biochem ; 172(4): 205-216, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35792074

RESUMO

Saliva contributes to the innate immune system, which suggests that it can prevent SARS-CoV-2 entry. We studied the ability of healthy salivary proteins to bind to angiotensin-converting enzyme 2 (ACE2) using biolayer interferometry and pull-down assays. Their effects on binding between the receptor-binding domain of the SARS-CoV-2 spike protein S1 (S1) and ACE2 were determined using an enzyme-linked immunosorbent assay. Saliva bound to ACE2 and disrupted the binding of S1 to ACE2 and four ACE2-binding salivary proteins were identified, including cationic histone H2A and neutrophil elastase, which inhibited the S1-ACE2 interaction. Calf thymus histone (ct-histone) also inhibited binding as effectively as histone H2A. The results of a cell-based infection assay indicated that ct-histone suppressed SARS-CoV-2 pseudoviral invasion into ACE2-expressing host cells. Manufactured polypeptides, such as ε-poly-L-lysine, also disrupted S1-ACE2 binding, indicating the importance of the cationic properties of salivary proteins in ACE2 binding. Overall, we demonstrated that positively charged salivary proteins are a barrier against SARS-CoV-2 entry by cloaking the negatively charged surface of ACE2 and provided a view that the cationic polypeptides represent a preventative and therapeutic treatment against COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Histonas/metabolismo , Humanos , Elastase de Leucócito/metabolismo , Peptidil Dipeptidase A/metabolismo , Polilisina/metabolismo , Ligação Proteica , SARS-CoV-2 , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , Glicoproteína da Espícula de Coronavírus
6.
Lab Chip ; 22(13): 2519-2530, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35510631

RESUMO

We report a notch-shaped coplanar microwave waveguide antenna on a glass plate designed for on-chip detection of optically detected magnetic resonance (ODMR) of fluorescent nanodiamonds (NDs). A lithographically patterned thin wire at the center of the notch area in the coplanar waveguide realizes a millimeter-scale ODMR detection area (1.5 × 2.0 mm2) and gigahertz-broadband characteristics with low reflection (∼8%). The ODMR signal intensity in the detection area is quantitatively predictable by numerical simulation. Using this chip device, we demonstrate a uniform ODMR signal intensity over the detection area for cells, tissue, and worms. The present demonstration of a chip-based microwave architecture will enable scalable chip integration of ODMR-based quantum sensing technology into various bioassay platforms.


Assuntos
Micro-Ondas , Nanodiamantes , Vidro , Espectroscopia de Ressonância Magnética
7.
Oncogenesis ; 11(1): 23, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504863

RESUMO

Pancreatic cancer is a highly challenging malignancy with extremely poor prognosis. Cytoglobin (CYGB), a hemeprotein involved in liver fibrosis and cancer development, is expressed in pericytes of all organs. Here, we examined the role of CYGB in the development of pancreatic cancer. CYGB expression appeared predominately in the area surrounding adenocarcinoma and negatively correlated with tumor size in patients with pancreatic cancer. Directly injecting 7, 12-dimethylbenz[a]anthracene into the pancreatic tail in wild-type mice resulted in time-dependent induction of severe pancreatitis, fibrosis, and oxidative damage, which was rescued by Cygb overexpression in transgenic mice. Pancreatic cancer incidence was 93% in wild-type mice but only 55% in transgenic mice. Enhanced CYGB expression in human pancreatic stellate cells in vitro reduced cellular collagen synthesis, inhibited cell activation, increased expression of antioxidant-related genes, and increased CYGB secretion into the medium. Cygb-overexpressing or recombinant human CYGB (rhCYGB) -treated MIA PaCa-2 cancer cells exhibited dose-dependent cell cycle arrest at the G1 phase, diminished cell migration, and reduction in colony formation. RNA sequencing in rhCYGB-treated MIA PaCa-2 cells revealed downregulation of cell cycle and oxidative phosphorylation pathways. An increase in MIA PaCa-2 cell proliferation and reactive oxygen species production by H2O2 challenge was blocked by rhCYGB treatment or Cygb overexpression. PANC-1, OCUP-A2, and BxPC-3 cancer cells showed similar responses to rhCYGB. Known antioxidants N-acetyl cysteine and glutathione also inhibited cancer cell growth. These results demonstrate that CYGB suppresses pancreatic stellate cell activation, pancreatic fibrosis, and tumor growth, suggesting its potential therapeutic application against pancreatic cancer.

8.
Redox Biol ; 52: 102286, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35334247

RESUMO

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) are the primary cell type in liver fibrosis, a significant global health care burden. Cytoglobin (CYGB), a globin family member expressed in HSCs, inhibits HSC activation and reduces collagen production. We studied the antifibrotic properties of globin family members hemoglobin (HB), myoglobin (MB), and neuroglobin (NGB) in comparison with CYGB. APPROACH & RESULTS: We characterized the biological activities of globins in cultured human HSCs (HHSteCs) and their effects on carbon tetrachloride (CCl4)-induced cirrhosis in mice. All globins demonstrated greater antioxidant capacity than glutathione in cell-free systems. Cellular fractionation revealed endocytosis of extracellular MB, NGB, and CYGB, but not HB; endocytosed globins localized to intracellular membranous, cytoplasmic, and cytoskeletal fractions. MB, NGB, and CYGB, but not HB, scavenged reactive oxygen species generated spontaneously or stimulated by H2O2 or transforming growth factor ß1 in HHSteCs and reduced collagen 1A1 production via suppressing COL1A1 promoter activity. Disulfide bond-mutant NGB displayed decreased heme and superoxide scavenging activity and reduced collagen inhibitory capacity. RNA sequencing of MB- and NGB-treated HHSteCs revealed downregulation of extracellular matrix-encoding and fibrosis-related genes and HSC deactivation markers. Upregulation of matrix metalloproteinase (MMP)-1 was observed following MB and NGB treatment, and MMP-1 knockdown partially reversed globin-mediated effects on secreted collagen. Importantly, administration of MB, NGB, and CYGB suppressed CCl4-induced mouse liver fibrosis. CONCLUSIONS: These findings revealed unexpected roles for MB and NGB in deactivating HSCs and inhibiting liver fibrosis development, suggesting that globin therapy may represent a new strategy for combating fibrotic liver disease.


Assuntos
Globinas , Metaloproteinase 1 da Matriz , Animais , Citoglobina , Globinas/genética , Globinas/metabolismo , Hemoglobinas , Peróxido de Hidrogênio , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Espécies Reativas de Oxigênio
9.
Hepatology ; 73(6): 2527-2545, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33576020

RESUMO

BACKGROUND AND AIMS: Antifibrotic therapy remains an unmet medical need in human chronic liver disease. We report the antifibrotic properties of cytoglobin (CYGB), a respiratory protein expressed in hepatic stellate cells (HSCs), the main cell type involved in liver fibrosis. APPROACH AND RESULTS: Cygb-deficient mice that had bile duct ligation-induced liver cholestasis or choline-deficient amino acid-defined diet-induced steatohepatitis significantly exacerbated liver damage, fibrosis, and reactive oxygen species (ROS) formation. All of these manifestations were attenuated in Cygb-overexpressing mice. We produced hexa histidine-tagged recombinant human CYGB (His-CYGB), traced its biodistribution, and assessed its function in HSCs or in mice with advanced liver cirrhosis using thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). In cultured HSCs, extracellular His-CYGB was endocytosed and accumulated in endosomes through a clathrin-mediated pathway. His-CYGB significantly impeded ROS formation spontaneously or in the presence of ROS inducers in HSCs, thus leading to the attenuation of collagen type 1 alpha 1 production and α-smooth muscle actin expression. Replacement the iron center of the heme group with cobalt nullified the effect of His-CYGB. In addition, His-CYGB induced interferon-ß secretion by HSCs that partly contributed to its antifibrotic function. Momelotinib incompletely reversed the effect of His-CYGB. Intravenously injected His-CYGB markedly suppressed liver inflammation, fibrosis, and oxidative cell damage in mice administered TAA or DDC mice without adverse effects. RNA-sequencing analysis revealed the down-regulation of inflammation- and fibrosis-related genes and the up-regulation of antioxidant genes in both cell culture and liver tissues. The injected His-CYGB predominantly localized to HSCs but not to macrophages, suggesting specific targeting effects. His-CYGB exhibited no toxicity in chimeric mice with humanized livers. CONCLUSIONS: His-CYGB could have antifibrotic clinical applications for human chronic liver diseases.


Assuntos
Citoglobina/metabolismo , Fígado Gorduroso , Células Estreladas do Fígado , Cirrose Hepática , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Colestase/tratamento farmacológico , Colestase/metabolismo , Descoberta de Drogas , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Camundongos , Camundongos Knockout , Substâncias Protetoras/farmacologia , Proteínas Recombinantes/farmacologia , Resultado do Tratamento
10.
Organogenesis ; 16(3): 83-94, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32727280

RESUMO

Alopecia has several causes, but its relationship with ischemia/hypoxia has not yet been investigated in detail. In this study, we studied the changes of hair follicles induced by ischemia and potential effects of normobaric hyperoxygenation (NBO) on the hair cycle and growth. We found that skin ischemia reduced hair growth rate, hair shaft size, and its pigmentation in the anagen phase of mice, which may reflect an aspect of pathophysiology of hair loss (alopecia) and depigmentation (gray/white hairs). Hyperoxygenation increased hair growth rate in organ culture of both human and murine hair follicles. Systemic NBO promoted hair growth in early anagen and mid-anagen, and delayed catagen onset in mice. However, telogen-to-anagen transition was not affected by NBO as far as non-ischemic skin is concerned. The results of this study indicated that the hair follicle is very sensitive to oxygen tension and oxygen tension affects the regulation of hair growth and cycle in vitro and in vivo. It was suggested that systemic NBO can be safely applied for a long period and can be a noninvasive therapeutic approach to alter hair growth and cycle by manipulating the microenvironment of hair follicles.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Cabelo/crescimento & desenvolvimento , Oxigenoterapia Hiperbárica/métodos , Isquemia , Oxigênio/uso terapêutico , Alopecia/etiologia , Animais , Humanos , Hiperóxia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Pele/fisiopatologia , Pigmentação da Pele
11.
Tissue Eng Part A ; 26(21-22): 1147-1157, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32408803

RESUMO

We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O2), physiological/normoxic (6% O2), or hypoxic (1% O2) conditions. Proliferation of DPCs and DSCs was highest under normoxia. Compared with hyperoxia, hypoxia inhibited proliferation of DPCs, but enhanced that of DSCs. In DPCs, hypoxia downregulated the expression of hair-inductive capacity-related genes, including BMP4, LEF1, SOX2, and VCAN. In DSCs, both normoxia and hypoxia upregulated SOX2 expression, whereas hypoxia downregulated BMP4 expression. Microarray analysis revealed that normoxia increased the expression of pluripotency-related genes, including SPRY, NR0B1, MSX2, IFITM1, and DAZL, compared with hyperoxia. In an in vivo hair follicle reconstitution assay, cultured DPCs and DSCs were transplanted with newborn mouse epidermal keratinocytes into nude mice using a chamber method. In this experiment, normoxia resulted in the most efficient induction of DPC hair follicles, whereas hypoxia caused the most efficient induction and maturation of DSC hair follicles. These results suggest that application of physiological/hypoxic oxygen tension to cultured human DSCs enhances proliferation and maintenance of hair inductivity for skin engineering and clinical applications. Impact statement Dermal sheath cells (DSCs) and dermal papilla cells (DPCs) are useful cell sources for cell-based regenerative therapy. This is the first report to describe that low-oxygen conditions are better for DSCs. Normoxic and hypoxic culture of DSCs is beneficial for expanding these hair follicular cells and advancing development of cell-based therapy for both wound healing and hair regeneration. The current study supports that optimized oxygen tension can be applied to use expanded human DPCs and DSCs for skin engineering and clinical applications.


Assuntos
Derme , Folículo Piloso , Oxigênio , Regeneração , Animais , Células Cultivadas , Derme/citologia , Humanos , Camundongos , Camundongos Nus , Cicatrização
12.
J Hepatol ; 73(4): 882-895, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32330605

RESUMO

BACKGROUND & AIMS: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. The molecular role of CYGB in human hepatic stellate cell (HSC) activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which the TGF-ß1/SMAD2 pathway regulates the human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS: Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analyses were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA. RESULTS: In culture, TGF-ß1-pretreated human HSCs exhibited lower CYGB levels - together with increased NADPH oxidase 4 (NOX4) expression - and were primed for H2O2-triggered •OH production and 8-OHdG generation; overexpression of human CYGB in human HSCs reversed these effects. Electron spin resonance demonstrated the direct •OH scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2-+13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-ß1/SMAD3 mediated αSMA and collagen expression. Consistent with observations in cultured human HSCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA+pSMAD2+- and αSMA+NOX4+-positive hepatic stellate cells from patients with NASH and advanced fibrosis. CONCLUSIONS: Downregulation of CYGB by the TGF-ß1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from patients with NASH. LAY SUMMARY: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species and protects cells from oxidative DNA damage. Herein, we show that the cytokine TGF-ß1 downregulates human CYGB expression. This leads to oxidative DNA damage in activated hepatic stellate cells. Our findings provide new insights into the relationship between CYGB expression and the pathophysiology of fibrosis in patients with non-alcoholic steatohepatitis.


Assuntos
Citoglobina/genética , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , NADPH Oxidase 4/genética , Hepatopatia Gordurosa não Alcoólica/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/metabolismo , Biópsia , Células Cultivadas , Citoglobina/biossíntese , Regulação para Baixo , Feminino , Células Estreladas do Fígado/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 4/biossíntese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/genética , Proteína Smad3/biossíntese
13.
Mol Cell Biochem ; 455(1-2): 7-19, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30426301

RESUMO

Senescent hepatic stellate cells (senescent HSCs) are found in patients with liver cirrhosis and have been thought to be involved in the development of hepatocellular carcinoma (HCC) in mice via the senescence-associated secretory proteins. However, in humans, which secretory proteins are involved and what regulate their expression remain unclear. In the current study, we characterized senescence-associated ß-galactosidase-positive senescent human HSCs (hHSCs) induced by repetitive passaging. They exhibited enhanced expression of 14 genes for secretory protein and persistent phosphorylation of ERK1/2 protein but not JNK or p38 MAPK proteins. Enhanced nuclear ERK1/2 phosphorylation was observed in senescent hHSCs. Treatment of the senescent hHSCs with ERK1/2 inhibitor, SCH772984, significantly decreased the levels of angiopoietin like 4 (ANGPTL4), C-C motif chemokine ligand 7 (CCL7), Interleukin-8 (IL-8), platelet factor 4 variant 1 (PF4V1), and TNF superfamily member 15 (TNFSF15) mRNA levels in a dose-dependent manner. The enhanced phosphorylation of ERK1/2 and expression of ANGPTL4, IL-8 and PF4V1 genes were observed in both of senescent human dermal fibroblasts and X-ray-induced senescent hHSCs. However, transient ERK1/2 activation induced by epidermal growth factor could not mimic the gene profile of the senescent hHSCs. These results revealed involvement of ERK1/2 signaling in the regulation of senescence-associated secretory factors, suggesting that simultaneous induction of ANGPTL4, IL-8, and PF4V1 genes is a marker of hHSC senescence. This study will contribute to understanding roles of senescent hHSCs in liver diseases.


Assuntos
Senescência Celular , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos
14.
Sci Rep ; 8(1): 17860, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552362

RESUMO

Cytoglobin (CYGB), discovered in hepatic stellate cells (HSCs), is known to possess a radical scavenger function, but its pathophysiological roles remain unclear. Here, for the first time, we generated a new transgenic (TG) mouse line in which both Cygb and mCherry reporter gene expression were under the control of the native Cygb gene promoter. We demonstrated that the expression of Cygb-mCherry was related to endogenous Cygb in adult tissues by tracing mCherry fluorescence together with DNA, mRNA, and protein analyses. Administration of a single dose (50 mg/kg) of thioacetamide (TAA) in Cygb-TG mice resulted in lower levels of alanine transaminase and oxidative stress than those in WT mice. After 10 weeks of TAA administration, Cygb-TG livers exhibited reduced neutrophil accumulation, cytokine expression and fibrosis but high levels of quiescent HSCs. Primary HSCs isolated from Cygb-TG mice (HSCCygb-TG) exhibited significantly decreased mRNA levels of α-smooth muscle actin (αSMA), collagen 1α1, and transforming growth factor ß-3 after 4 days in culture relative to WT cells. HSCsCygb-TG were resistant to H2O2-induced αSMA expression. Thus, cell-specific overexpression of Cygb attenuates HSC activation and protects mice against TAA-induced liver fibrosis presumably by maintaining HSC quiescence. Cygb is a potential new target for antifibrotic approaches.


Assuntos
Citoglobina/biossíntese , Expressão Gênica , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/prevenção & controle , Tioacetamida/toxicidade , Animais , Fusão Gênica Artificial , Genes Reporter , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Tioacetamida/administração & dosagem , Proteína Vermelha Fluorescente
15.
J Biol Chem ; 292(46): 18961-18972, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28916723

RESUMO

Cytoglobin (CYGB) belongs to the mammalian globin family and is exclusively expressed in hepatic stellate cells (HSCs) in the liver. In addition to its gas-binding ability, CYGB is relevant to hepatic inflammation, fibrosis, and cancer because of its anti-oxidative properties; however, the regulation of CYGB gene expression remains unknown. Here, we sought to identify factors that induce CYGB expression in HSCs and to clarify the molecular mechanism involved. We used the human HSC cell line HHSteC and primary human HSCs isolated from intact human liver tissues. In HHSteC cells, treatment with a culture supplement solution that included fibroblast growth factor 2 (FGF2) increased CYGB expression with concomitant and time-dependent α-smooth muscle actin (αSMA) down-regulation. We found that FGF2 is a key factor in inducing the alteration in both CYGB and αSMA expression in HHSteCs and primary HSCs and that FGF2 triggered the rapid phosphorylation of both c-Jun N-terminal kinase (JNK) and c-JUN. Both the JNK inhibitor PS600125 and transfection of c-JUN-targeting siRNA abrogated FGF2-mediated CYGB induction, and conversely, c-JUN overexpression induced CYGB and reduced αSMA expression. Chromatin immunoprecipitation analyses revealed that upon FGF2 stimulation, phospho-c-JUN bound to its consensus motif (5'-TGA(C/G)TCA), located -218 to -222 bases from the transcription initiation site in the CYGB promoter. Of note, in bile duct-ligated mice, FGF2 administration ameliorated liver fibrosis and significantly reduced HSC activation. In conclusion, FGF2 triggers CYGB gene expression and deactivation of myofibroblastic human HSCs, indicating that FGF2 has therapeutic potential for managing liver fibrosis.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Globinas/genética , Células Estreladas do Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Ativação Transcricional , Linhagem Celular , Citoglobina , Globinas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Regiões Promotoras Genéticas
16.
Biochim Biophys Acta Gen Subj ; 1861(9): 2261-2273, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28668298

RESUMO

BACKGROUND: Tensioned collagen gels with dermal fibroblasts (DFs) as a dermis model are usually utilized in a static culture (SC) that lacks medium flowing. To make the model closer to its in vivo state, we created a device to perfuse the model with media flowing at a physiological velocity and examined the effects of medium flow (MF) on the cultures. METHODS: We constructed a medium perfusion device for human DF-embedded stretched collagen gels (human dermis model), exposed the model to media that flows upwardly at ~1mL/day, and examined water retention of the gels, cells' growth ability, metabolic activity, expression profiles of nine extracellular matrix (ECM)-related genes. The obtained data were compared with those from the model in SC. RESULTS: MF increases the gels' water retention and cells' growth potential but had little effect on their metabolic activities. MF robustly enhanced hyaluronan synthase 2 (HAS2) and matrix metalloprotease 1 (MMP1) gene expressions but not of the other genes (MMP2, HYAL1, HYAL2, HYAL3, COL1A1, COL3A1, and CD44). MF significantly increased the amounts of cellular hyaluronan and adenosine triphosphate. CONCLUSIONS: The MF at a physiological speed significantly influences the nature of ECMs and their resident fibroblasts and remodels ECMs by regulating hyaluronan metabolism. GENERAL SIGNIFICANCE: Fibroblasts in tensioned collagen gels altered their phenotypes in a MF rate-dependent manner. Collagen gel culture with tension and MF could be utilized as an appropriate in vitro model of interstitial connective tissues to evaluate the pathophysiological significance of mechanosignals generated by fluid flow and cellular/extracellular tension.


Assuntos
Colágeno , Líquido Extracelular/fisiologia , Fibroblastos/fisiologia , Ácido Hialurônico/biossíntese , Proliferação de Células , Células Cultivadas , Matriz Extracelular/metabolismo , Géis , Humanos
17.
Sci Rep ; 7: 41888, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28157235

RESUMO

This study clarified the role of Cygb, the fourth globin in mammals originally discovered in rat hepatic stellate cells (HSCs), in cholestatic liver disease. Bile duct ligation (BDL) augmented inflammatory reactions as revealed by increased infiltrating neutrophils, CD68+-macrophages, and chemokine expression in Cygb-/- mice. In these mice, impairment of bile canalicular indicated by the loss of CD10 expression, down-regulation of bile salt transporters, increased total bile acid, and massive apoptotic and necrotic hepatocytes occurred with the release of cytochrome c, activation of caspase 3, resulting in reduced animal survival compared to wild-type mice. In Cygb-/- mouse liver, all of NO metabolites and oxidative stress were increased. Treatment with NO inhibitor restrained all above phenotypes and restored CD10 expression in BDL Cygb-/- mice, while administration of NO donor aggravated liver damage in BDL-wild type mice to the same extent of BDL-Cygb-/- mice. N-acetylcysteine administration had a negligible effect in all groups. In mice of BDL for 1-3 weeks, expression of all fibrosis-related markers was significantly increased in Cygb-/- mice compared with wild-type mice. Thus, Cygb deficiency in HSCs enhances hepatocyte damage and inflammation in early phase and fibrosis development in late phase in mice subjected to BDL, presumably via altered NO metabolism.


Assuntos
Colestase/metabolismo , Globinas/deficiência , Cirrose Hepática/metabolismo , Óxido Nítrico/metabolismo , Animais , Proteínas de Transporte/metabolismo , Caspase 3/metabolismo , Colestase/complicações , Citocromos c/metabolismo , Citoglobina , Globinas/genética , Hepatócitos/metabolismo , Cirrose Hepática/etiologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neprilisina/metabolismo
18.
J Tissue Eng Regen Med ; 11(4): 977-988, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-25689375

RESUMO

We developed a nude rat model for determining the capacity of trichogenous cells to restore in vivo-damaged hair follicles (HFs). A surgical scalpel was inserted into the rat's dermis to generate the in vivo-damaged pelage HFs, the HFs whose lower parts were lost, but the upper parts containing sebaceous and bulge regions remained intact. Dermal papilla cells (DPCs) and dermal sheath cells (DSCs) from EGFP transgenic rat vibrissae were propagated in culture, and each alone (DPC or DSC) or a mixture (DPC/DSC) was transplanted into the intradermal path made by a scalpel. It was found that the in vivo-damaged HFs had hair self-restoration ability, and the transplanted trichogenic dermal cells prominently enhanced this ability, DPC/DSC transplants being more effective in enhancement than DPC or DSC alone. The restored bulbs contained EGFP-positive cells, shed their original straight shafts, generated new shafts, and further developed into hairs with a sebaceous gland and bulge structures by ~6 weeks post-transplantation. Compared to the preceding animal models, this model is less invasive, requires fewer donor cells and allows repeated operations with higher reproducibility and accuracy. The present study suggests that conditions causing in situ-damaged HFs, such as androgenic alopecia, in which HFs are damaged and miniaturized, can be restored by functional trichogenous dermal cell transplantation therapy. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Transplante de Células , Derme/citologia , Derme/transplante , Cabelo/fisiologia , Regeneração/fisiologia , Animais , Biomarcadores/metabolismo , Feminino , Cabelo/crescimento & desenvolvimento , Folículo Piloso/patologia , Ratos Nus
19.
Mol Ther ; 24(10): 1848-1859, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480597

RESUMO

The microRNA-29 (miR-29) family is known to suppress the activation of hepatic stellate cells (HSCs) and reversibly control liver fibrosis; however, the mechanism of how miR-29a controls liver fibrosis remains largely unknown. This study was conducted to clarify the mechanism of anti-fibrotic effect of miR-29a and to explore if miR-29a is a promising candidate for nucleic acid medicine against liver fibrosis. Two liver fibrosis murine models (carbon tetrachloride or thioacetamide) were used. MiR-29a mixed with atelocollagen was systemically administered. Hepatic fibrosis was evaluated by histological analysis and the expression levels of fibrosis-related genes. We observed that miR-29a treatment dramatically accelerated the reversion of liver fibrosis in vivo. Additionally, miR-29a regulated the mRNA expression of collagen type I alpha 1 (COL1A1) and platelet-derived growth factor C (PDGFC). We also noted that miR-29a significantly suppressed COL1A1 mRNA expression and cell viability and significantly increased caspase-9 activity (P < 0.05) in LX-2 cells. Pretreatment of miR-29a inhibited activation of LX-2 cell by transforming growth factor beta treatment. MiR-29a exhibited anti-fibrotic effect without cell toxicity in vivo and directly suppressed the expression of PDGF-related genes as well as COL1A1 and induced apoptosis of LX-2 cells. MiR-29a is a promising nucleic acid inhibitor to target liver fibrosis.


Assuntos
Tetracloreto de Carbono/efeitos adversos , Colágeno/química , Células Estreladas do Fígado/citologia , Cirrose Hepática/terapia , MicroRNAs/administração & dosagem , Tioacetamida/efeitos adversos , Animais , Linhagem Celular , Sobrevivência Celular , Colágeno/administração & dosagem , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Regulação da Expressão Gênica , Terapia Genética/métodos , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Linfocinas/genética , Camundongos , MicroRNAs/química , Fator de Crescimento Derivado de Plaquetas/genética
20.
Plant Signal Behav ; 11(7): e1197464, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27301959

RESUMO

Protein tyrosine nitration is an important post-translational modification. A variety of nitrated proteins are reported in Arabidopsis leaves and seedlings, sunflower hypocotyls, and pea roots. The identities of nitrated proteins are species-/organ-specific, and chloroplast proteins are most nitratable in leaves. However, precise mechanism is unclear. Here, we investigated nitroproteome in tobacco leaves following exposure to nitrogen dioxide. Proteins were extracted, electrophoresed and immunoblotted using an anti-3-nitrotyrosine antibody. Mass spectrometry and FASTA search identified for the first time an exclusive nitration of pathogenesis-related proteins, PR-1, PR-3 and PR-5, which are reportedly located in the apoplast or the vacuole. Furthermore, Tyr(36) of thaumatin-like protein E2 was identfied as a nitration site. The underlying mechanism and physiological relevance are discussed.


Assuntos
Nicotiana/metabolismo , Nitratos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Dióxido de Nitrogênio/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Nicotiana/genética , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA