Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(23): 13802-13812, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566846

RESUMO

We show that the adsorption site basis of the (2√3 × 3)rect. phase of n-alkanethiol self-assembled monolayers plays a key role in determining the molecular conformation of the close-packed alkyl chains. Ten proposed reconstructed Au-S interfaces are used to explore the minimized energy alkyl-chain packing of n-decanethiol molecules using molecular dynamics with the all-atom description. In this comparative study, all models have the same alkyl-chain surface density of four molecules per unit cell; thus, differences are due to the headgroup spacing within the 4-molecule basis as opposed to the average surface density. We demonstrate for the first time the 4-molecule-basis twist structure driven by the packing of alkanethiol molecules in a large simulation box (100 molecules, 25 unit cells) using molecular dynamics. Our results validate the prediction put forward by Mar and Klein that to achieve the 4-molecule-basis twist symmetry observed by the experiment, the headgroups must deviate from the high-symmetry (√3 × âˆš3)R30° sites. The key structural parameters: tilt, twist, and end-group height, as well as their spatial order, are compared with experimental results, which we show is a highly sensitive approach that can be used to vet proposed Au-S interfacial models.

2.
Rev Sci Instrum ; 88(1): 013708, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147674

RESUMO

We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA