Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 842: 156890, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753492

RESUMO

Poly(ethylene terephthalate) (PET) is synthesized via a rich ester bond between terephthalate (TPA) and ethylene glycol (EG). Because of this, PET degradation takes a long time and PET accumulates in the environment. Many studies have been conducted to improve PET degrading enzyme to increase the efficiency of PET depolymerization. However, enzymatic PET decomposition is still restricted, making upcycling and recycling difficult. Here, we report a novel PET degrading complex composed of Ideonella sakaiensis PETase and Candida antarctica lipase B (CALB) that improves degradability, binding ability and enzyme stability. The reaction mechanism of chimeric PETase (cPETase) and chimeric CALB (cCALB) was confirmed by PET and bis (2-hydroxyethyl terephthalate) (BHET). cPETase generated BHET and mono (2-hydroxyethyl terephthalate (MHET) and cCALB produced terephthalate (TPA). Carbohydrate binding module 3 (CBM3) in the scaffolding protein greatly improved PET film binding affinity. Finally, the final enzyme complex demonstrated a 6.5-fold and 8.0-fold increase in the efficiency of hydrolysis from PET with either high crystalline or waste to TPA than single enzymes, respectively. This complex could effectively break down waste PET while maintaining enzyme stability and would be applied for biological upcycling of TPA.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Etilenos , Ácidos Ftálicos/metabolismo , Plásticos/metabolismo , Polietilenotereftalatos/química
2.
J Agric Food Chem ; 69(40): 11912-11918, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34586795

RESUMO

Metabolic engineering of non-photosynthetic microorganisms to increase the utilization of CO2 has been focused on as a green strategy to convert CO2 into valuable products such as fatty acids. In this study, a CO2 utilization pathway involving carbonic anhydrase and biotin carboxylase was formed to recycle CO2 in the oleaginous yeast Yarrowia lipolytica, thereby increasing the production of fatty acids. In the recombinant strain in which the CO2 utilization pathway was introduced, the production of fatty acids was 10.7 g/L, which was 1.5-fold higher than that of the wild-type strain. The resulting strain had a 1.4-fold increase in dry cell mass compared to the wild-type strain. In addition, linoleic acid was 47.7% in the fatty acid composition of the final strain, which was increased by 11.6% compared to the wild-type strain. These results can be applied as an essential technology for developing efficient and eco-friendly processes by directly utilizing CO2.


Assuntos
Yarrowia , Dióxido de Carbono , Ácidos Graxos , Engenharia Metabólica , Yarrowia/genética
3.
Metab Eng ; 66: 217-228, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945844

RESUMO

Recently, heme has attracted much attention as a main ingredient that mimics meat flavor in artificial meat in the food industry. Here, we developed Corynebacterium glutamicum capable of high-yield production of heme with systems metabolic engineering and modification of membrane surface. The combination of two precursor pathways based on thermodynamic information increased carbon flux toward heme and porphyrin intermediate biosynthesis. The co-overexpression of genes involved in a noncanonical downstream pathway and the gene encoding the transcriptional regulator DtxR significantly enhanced heme production. The overexpression of the putative heme exporters, knockout of heme-binding proteins, modification of the cell wall by chemical treatment, and reduction of intermediate UP III substantially improved heme secretion. The fed-batch fermentation showed a maximum heme titer of 309.18 ± 16.43 mg l-1, including secreted heme of 242.95 ± 11.45 mg l-1, a yield on glucose of 0.61 mmol mol-1, and productivity of 6.44 mg l-1h-1, which are the highest values reported to date. These results demonstrate that engineered C. glutamicum can be an attractive cell factory for animal-free heme production.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Fermentação , Heme , Carne , Engenharia Metabólica
4.
Bioresour Technol ; 318: 124072, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32911368

RESUMO

Photosynthesis of C. vulgaris shows slow growth and low lipid production due to the low solubility of CO2, and it is thus necessary to increase the dissolved inorganic carbon source to solve this problem. In this study, carbonic anhydrase (CA) was fused with dockerin to form a CA complex by cohesion-dockerin interaction. The CA complex was displayed on the surface of C. vulgaris by a cellulose binding module. The CA complex increased activity and stability compared to those of a single enzyme. Additionally, C. vulgaris showed an average of 1.6-fold rapid growth during log phase through the influence of the CA complex. The bicarbonate produced by the CA complex increased the lipid production about 1.7-fold (23.3%), compared to 13.6% for the control group. The present results suggest that the CA complex successfully enhances the CO2 fixation, which should be an essential study for 4th generation biofuels.


Assuntos
Anidrases Carbônicas , Chlorella vulgaris , Biocombustíveis , Dióxido de Carbono , Lipídeos
5.
Int J Biol Macromol ; 129: 181-186, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738166

RESUMO

Melanin is major cause of dark skin, which is regarded as social status in eastern Asia. As a result, researchers in cosmetic industries are developing skin whitening agents. Melanin can be decolorized by many oxidative enzymes. Laccase (CueO) from Escherichia coli and dye-decolorizing peroxidase (DyP) from Bacillus subtilis were merged with the dockerin domain of endoglucanase B from Clostridium cellulovorans. Scaffoldin has great potential to exert structural benefits that enable complementary enzyme effects. The carbohydrate binding module (CBM) in scaffoldin was replaced with the melanin binding peptide (MBP) to increase melanin binding and thereby enhance melanin degradation. The modified scaffoldin exhibits a nearly 64% increase in specific binding to melanin over that of the native scaffoldin. Laccase was used to degrade melanin via the production of hydrogen peroxide, which produced synergistic activity with peroxidase. The activity of the optimized complex was approximately 6.4-fold greater than that of laccase alone. This enzyme complex can also reduce the number of melanin granules in corneocytes. Based on these results, a recombinant enzyme complex is suitable for use in melanin degradation by next generation whitening agents in the skin cosmetics industry.


Assuntos
Lacase/farmacologia , Melaninas/metabolismo , Peroxidase/farmacologia , Preparações Clareadoras de Pele/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Estabilidade Enzimática , Peróxido de Hidrogênio/química , Cinética , Lacase/química , Lacase/genética , Oxirredução , Peroxidase/química , Peroxidase/genética , Ligação Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Preparações Clareadoras de Pele/química
6.
J Agric Food Chem ; 66(51): 13454-13463, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516051

RESUMO

Taurine is a biologically and physiologically valuable food additive. However, commercial taurine production mainly relies on environmentally harmful chemical synthesis. Herein, for the first time in bacteria, we attempted to produce taurine in metabolically engineered Corynebacterium glutamicum. The taurine-producing strain was developed by introducing cs, cdo1, and csad genes. Interestingly, while the control strain could not produce taurine, the engineered strains successfully produced taurine via the newly introduced metabolic pathway. Furthermore, we investigated the effect of a deletion strain of the transcriptional repressor McbR gene on taurine production. As a result, sulfur accumulation and l-cysteine biosynthesis were reinforced by the McbR deletion strain, which further increased the taurine production by 2.3-fold. Taurine production of the final engineered strain Tau11 was higher than in other previously reported strains. This study demonstrated a potential approach for eco-friendly biosynthesis as an alternative to the chemical synthesis of a food additive.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Aditivos Alimentares/metabolismo , Engenharia Metabólica , Taurina/biossíntese , Fermentação , Redes e Vias Metabólicas
7.
Bioresour Technol ; 250: 666-672, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29220811

RESUMO

In the practice of converting red algae biomass into biofuel or valuable biomaterials, the critical step is the decomposition process of the agarose to give fermentable monomeric sugars. In this study, we selected three enzymes such as agarase, carrageenase and neoagarobiose hydrolase to inducible the simultaneous hydrolysis of the major substrates such as agar and carrageenan constituting the pretreated red algae, and expressed the chimeric enzymes and formed a complexes through optimization of addition ratio. As a result, hydrolysis by enzyme complexes showed a maximum sugar release of 679 mg L-1 with 67.9% saccharification yield from G. verrucosa natural substrate. The difference in the reducing sugar by the enzyme complexes was 3.6-fold higher than that of the monomer enzyme (cAgaB yield 188.6 mg L-1). The synergistic effect of producing sugars from red algae biomass through these enzyme complexes can be a very important biological tools aimed at bioenergy production.


Assuntos
Glicosídeo Hidrolases , Rodófitas , Dissacaridases
8.
J Agric Food Chem ; 65(50): 11029-11035, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29185736

RESUMO

Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.


Assuntos
Ração Animal/análise , Bovinos/metabolismo , Suplementos Nutricionais/análise , Ácidos Graxos/biossíntese , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Bovinos/crescimento & desenvolvimento , Engenharia Metabólica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Biotechnol J ; 12(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28846199

RESUMO

Dimethyl itaconate is an important raw material for copolymerization, but it is not synthesized from itaconic acid by organisms. Moreover, Corynebacterium glutamicum is used as an important industrial host for the production of organic acids, but it does not metabolize itaconic acid. Therefore, the biosynthetic route toward dimethyl itaconate from itaconic acid is highly needed. In this study, a biological procedure for dimethyl itaconate production is developed from rice wine waste-derived itaconic acid using the engineered C. glutamicum strain. The first step is to investigate the effect of the co-overexpression of the codon-optimized cis-aconitic acid decarboxylase (CadA*) and a transcriptional regulator of genes involved in acetic acid metabolism (RamA) on itaconic acid production. The second step is to convert itaconic acid into dimethyl itaconate by lipase-catalyzed esterification. The CadA* and RamA-overexpressing CG4 strain increases the itaconic acid concentration under N-starvation with glucose and acetic acid compared with the concentration produced in the base mCGXII medium with glucose. Furthermore, the rice wine waste-derived itaconic acid is successfully converted into dimethyl itaconate using lipase from Rhizomucor miehei and a methanol substrate. This study is the first trial for bio-based production of dimethyl itaconate from rice wine waste-derived itaconic acid.


Assuntos
Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Oryza/química , Succinatos/metabolismo , Vinho , Corynebacterium glutamicum/genética , Glucose/metabolismo , Resíduos Industriais , Succinatos/análise
10.
J Biotechnol ; 192 Pt A: 108-13, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25281802

RESUMO

Carrageenan is a generic name for a family of polysaccharides obtained from certain species of red algae. New methods to produce useful cost-efficiently materials from red algae are needed to convert enzymatic processes into fermentable sugars. In this study, we constructed chimeric genes cCgkA and cCglA containing the catalytic domain of κ-carrageenase CgkA and λ-carrageenase CglA from Pseudoalteromonas carrageenovora fused with a dockerin domain. Recombinant strains expressing the chimeric carrageenase resulted in a halo formation on the carrageenan plate by alcian blue staining. The recombinant cCgkA and cCglA were assembled with scaffoldin miniCbpA via cohesin and dockerin interaction. Carbohydrate binding module (CBM) in scaffoldin was used as a tag for cellulose affinity purification using cellulose as a support. The hydrolysis process was monitored by the amount of reducing sugar released from carrageenan. Interestingly, these results indicated that miniCbpA, cCgkA and cCglA assembled into a complex and that the dockerin-fused enzymes on the scaffoldin had synergistic activity in the degradation of carrageenan. The observed enhancement of activity by carrageenolytic complex was 3.1-fold-higher compared with the corresponding enzymes alone. Thus, the assemblies of advancement of active enzyme complexes will facilitate the commercial production of useful products from red algae biomass which represents inexpensive and sustainable feed-stocks.


Assuntos
Proteínas de Bactérias/metabolismo , Carragenina/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/genética , Biomassa , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/genética , Hidrólise , Pseudoalteromonas/enzimologia , Proteínas Recombinantes de Fusão/genética , Rodófitas , Coesinas
11.
J Bacteriol ; 194(9): 2181-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22366416

RESUMO

The pck (cg3169) gene of Corynebacterium glutamicum encodes a phosphoenolpyruvate carboxykinase (PEPCK). Here, a candidate transcriptional regulator that binds to the promoter region of pck was detected using a DNA affinity purification approach. An isolated protein was identified to be PckR (Cg0196), a GntR family transcriptional regulator which consists of 253 amino acids with a mass of 27 kDa as measured by peptide mass fingerprinting. The results of electrophoretic mobility shift assays verified that PckR specifically binds to the pck promoter. The putative regulator binding region extended from position -44 to -27 (an 18-bp sequence) relative to the transcriptional start point of the pck gene. We measured the expression of pck in a pckR deletion mutant by using quantitative real-time reverse transcription-PCR. The expression level of pck in the pckR mutant was 7.6 times higher than that in wild-type cells grown in glucose. Comparative DNA microarray hybridizations and bioinformatic searches revealed the gene composition of the transcriptional regulon of C. glutamicum. Based on these results, PckR seemed to play an important role in the regulation of PEPCK in C. glutamicum grown in glucose. In particular, these assays revealed that PckR acts as a repressor of pck expression during glucose metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Corynebacterium glutamicum/classificação , Corynebacterium glutamicum/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli , Deleção de Genes , Perfilação da Expressão Gênica , Genoma Bacteriano , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA