Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 278(Pt 3): 134709, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159797

RESUMO

In this work, tannic acid was selected as a green cross-linking agent to cross-link carboxymethyl chitosan to prepare a magnetic adsorbent (CC-OTA@Fe3O4), which was used to remove methylene blue (MB) and Cu2+. CC-OTA@Fe3O4 was characterized by FTIR, 13C NMR, XRD, VSM, TGA, BET and SEM. The adsorption behavior was studied using various parameters such as pH value, contact time, initial concentration of MB and Cu2+, and temperature. The results showed that adsorption of MB and Cu2+ followed the pseudo-second-order model and the Sips model. The maximum adsorption capacities were determined to be 560.92 and 104.25 mg/g MB and Cu2+ at 298 K, respectively. Thermodynamic analysis showed that the adsorption is spontaneous and endothermic in nature. According to the results of FTIR and XPS analyses, the electrostatic interaction was accompanied by π-π interaction and hydrogen bonding for MB adsorption, while complexation and electrostatic interaction were the predominant mechanism for Cu2+ adsorption. Furthermore, CC-OTA@Fe3O4 displayed remarkable stability in 0.1 M HNO3, exhibited promising recyclability, and could be easily separated from aqueous solutions in the magnetic field. This study demonstrates the potential of CC-OTA@Fe3O4 as an adsorbent for the removal of cationic dyes and heavy metals from wastewater.

2.
J Agric Food Chem ; 69(7): 2306-2315, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33576221

RESUMO

In the present study, soy protein isolate (SPI) was noncovalently modified by (-)-epigallocatechin-3-gallate (EGCG), and its foaming, emulsifying, and antioxidant properties were all significantly increased. Fluorescence analysis revealed that the fluorescence quenching of SPI by EGCG was static quenching. EGCG mainly changed the folding state of SPI around Trp and Tyr residues, and the binding site was closer to Trp. UV-vis spectra further proved that more hydrophobic residues of SPI were exposed to a hydrophilic microenvironment. Circular dichroism spectra indicated that the contents of ordered structures were transforming into random coils with the reduce of α-helix, ß-sheet, and ß-turns by 3.8%, 2.0%, and 1.2%, respectively. Meanwhile, the binding stoichiometry of two molecules of EGCG per one molecule of SPI was obtained from isothermal titration calorimetry, and the interaction was a spontaneous endothermic process with a noncovalent complex preferentially formed. According to thermodynamic parameters and molecular docking model, hydrophobic force and hydrogen bonds were considered to be the main interaction forces between SPI and EGCG. Overall, after modification through the high affinity to EGCG, the structure of SPI became looser and exposed more active groups, thus resulting in an improvement of its foaming, emulsifying, and antioxidant properties.


Assuntos
Catequina , Proteínas de Soja , Catequina/análogos & derivados , Dicroísmo Circular , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Ligação Proteica
3.
RSC Adv ; 11(61): 38654-38666, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493257

RESUMO

Titanium dioxide, as a promising photocatalytic material, has attracted extensive attention in the field of photocatalytic degradation of organic pollutants in sewage. However, the photocatalytic performance needs to be further improved. In this work, fluorinated ZnO-TiO2 composites (F-ZTO) were prepared by a simple coprecipitation method. The photocatalytic performance of the samples was studied in detail with methyl orange as the target degradation product. The results indicated that under the same conditions, the degradation rates of 6% F-ZTO, F-TiO2 and TiO2 for methyl orange reached 93.75%, 76.56% and 62.89% respectively. This showed that the method used in this work could effectively improve the photocatalytic degradation performance of titanium dioxide. 6% F-ZTO showed an excellent photocatalytic activity, which was attributed to the small grain size, the large specific surface area and the effective inhibition of photoelectron-hole recombination due to fluorination and zinc oxide coupling. In three consecutive cycles, the photocatalytic activity was almost maintained, indicating that 6% F-ZTO had a good recycling performance.

4.
Water Sci Technol ; 81(5): 936-948, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32541112

RESUMO

A composite biosorbent (AC-TFR) prepared by encapsulating tannin-formaldehyde resin (TFR) into calcium alginate (AC) beads was used to remove Cr(VI) from an aqueous solution. Various influencing factors, such as TFR dosage, pH, initial Cr(VI) concentration, contact time, temperature and presence of co-ions in the medium, were investigated. The structures and adsorption performances of the adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compared with other AC-TFR adsorbents, AC-TFR-2 (mass ratio of AC:TFR = 1:1) showed an excellent adsorption capacity based on the efficiency of Cr(VI) removal. The kinetic data fitted to pseudo-second-order and intra-particle diffusion models suggested that the adsorption process was subject to a rate-controlling step. The equilibrium adsorption data fitted well to the Langmuir isotherm model, and the maximum adsorption capacities of AC-TFR-2 were 145.99, 167.22 and 174.52 mg/g at 288, 298, and 308 K, respectively. The thermodynamic parameters revealed that Cr(VI) removal by AC-TFR-2 was endothermic and spontaneous, and the process was chemical adsorption. The mechanism of Cr(VI) removal consisted first of reduction to Cr(III), which has a low toxicity, and then chelation onto AC-TFR-2 via ion exchange.


Assuntos
Alginatos , Poluentes Químicos da Água , Adsorção , Cromo , Concentração de Íons de Hidrogênio , Cinética , Taninos
5.
RSC Adv ; 9(28): 16271-16277, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521411

RESUMO

In this study, a novel biomass composite retention aid was developed by using collagen hydrolysate (CH) extracted from collagen waste as the starting material, glutaraldehyde as the organic crosslinking agent and polymeric aluminum chloride (PAC) as the inorganic modifying agent. The as-prepared retention aids were characterized by gel chromatography, hydrodynamic diameter, zeta potential, transmission electron microscope (TEM), ultraviolet-visible adsorption spectra (UV-Vis), Fourier infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results indicated that glutaraldehyde increased the molecular size of CH (i.e., CCH) through the crosslinking reaction between the aldehyde group of glutaraldehyde and the primary amine group of CH. Subsequently, the PAC further increased cationic charge density and molecular size of CCH (i.e., PAC-CCH) by the coordination interaction and self-assembly, thereby endowing PAC-CCH with better charge neutralization and bridging flocculation abilities. Compared to CH, CCH and PAC, the PAC-CCH exhibited excellent retention and drainage performances, and the best retention rate was greater than 85% at the dosage of 0.6 wt%. Our experimental results suggest that collagen wastes have a great potential to produce novel high-performance retention aids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA