Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(40): 45333-45341, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173933

RESUMO

Silicon monoxide (SiO)-based materials have gained much attention as high-capacity lithium storage materials based on their high capacity and stable capacity retention. However, low initial Coulombic efficiency associated with the irreversible electrochemical reaction of the amorphous SiO2 phase in SiO inhibits the wide usage of SiO-based anode materials for lithium-ion batteries. Magnesiation of SiO is one of the most promising solutions to improve the initial efficiency of SiO-based anode materials. Herein, we demonstrate that endothermic dehydrogenation-driven magnesiation of SiO employing MgH2 enhanced the initial Coulombic efficiency of 89.5% with much improved long-term cycle performance over 300 cycles compared to the homologue prepared by magnesiation of SiO with Mg and pristine SiO. High-resolution transmission electron microscopy with thermogravimetry-differential scanning calorimetry revealed that the endothermic dehydrogenation of MgH2 suppressed the sudden temperature rise during magnesiation of SiO, thereby inhibiting the coarsening of the active Si phase in the resulting Si/Mg2SiO4 nanocomposite.

2.
Small ; 18(27): e2202209, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35686333

RESUMO

Silicon monoxide (SiO)-based materials have great potential as high-capacity anode materials for lithium-ion batteries. However, they suffer from a low initial coulombic efficiency (ICE) and poor cycle stability, which prevent their successful implementation into commercial lithium-ion batteries. Despite considerable efforts in recent decades, their low ICE and poor cycle stability cannot be resolved at the same time. Here, it is demonstrated that the topological optimization of the prelithiated SiO materials is highly effective in improving both ICE and capacity retention. Laser-assisted atom probe tomography combined with thermogravimetry and differential scanning calorimetry reveals that two exothermic reactions related to microstructural evolution are key in optimizing the domain size of the Si active phase and Li2 SiO3 buffer phase, and their topological arrangements in prelithiated SiO materials. The optimized prelithiated SiO, heat-treated at 650 °C, shows higher capacity retention of 73.4% and lower thickness changes of 68% after 300 cycles than those treated at other temperatures, with high ICE of ≈90% and reversible capacity of 1164 mAh g-1 . Such excellent electrochemical properties of the prelithiated SiO electrode originate from its optimized topological arrangement of active Si phase and Li2 SiO3 inactive buffer phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA