Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(1): 620-627, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38048415

RESUMO

Cell distribution is one of the primary factors that can affect cell morphology and behaviors, as it determines cell-cell interactions. Despite the importance of cell distribution, the seeding process of in vitro cell culture still highly relies on the traditional method using manual pipetting. Because manual pipetting cannot ensure a uniform cell distribution and has the possibility of compromising experimental reproducibility, an accurate and systemic seeding method that enables uniform cell seeding over versatile culture substrates is required. Here, we developed a perforated plate-based cell seeding device called the CellShower, which enabled uniform cell seeding over a large area of cell culture substrates. The working principles of the CellShower are based on the laminar filling flow and capillary force in microfluidics, and the design of the CellShower was optimized with numerical simulations. The versatility of the CellShower in view of uniform cell seeding was demonstrated by applying it to various types of culture substrates from a conventional culture dish to culture substrates having nanotopography, porous structures, and 3D concave structures. The CellShower and its operating principles are expected to contribute to enhancing the accuracy and reproducibility of biological experiments.


Assuntos
Técnicas de Cultura de Células , Reprodutibilidade dos Testes , Porosidade
2.
Macromol Biosci ; 23(12): e2300244, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37590903

RESUMO

Nanofiber membranes (NFMs), which have an extracellular matrix-mimicking structure and unique physical properties, have garnered great attention as biomimetic materials for developing physiologically relevant in vitro organ/tissue models. Recent progress in NFM fabrication techniques immensely contributes to the development of NFM-based cell culture platforms for constructing physiological organ/tissue models. However, despite the significance of the NFM fabrication technique, an in-depth discussion of the fabrication technique and its future aspect is insufficient. This review provides an overview of the current state-of-the-art of NFM fabrication techniques from electrospinning techniques to postprocessing techniques for the fabrication of various types of NFM-based cell culture platforms. Moreover, the advantages of the NFM-based culture platforms in the construction of organ/tissue models are discussed especially for tissue barrier models, spheroids/organoids, and biomimetic organ/tissue constructs. Finally, the review concludes with perspectives on challenges and future directions for fabrication and utilization of NFMs.


Assuntos
Materiais Biomiméticos , Nanofibras , Nanofibras/química , Técnicas de Cultura de Células
3.
Mater Today Bio ; 20: 100648, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214546

RESUMO

Nanofiber (NF) membranes have been highlighted as functional materials for biomedical applications owing to their high surface-to-volume ratios, high permeabilities, and extracellular matrix-like biomimetic structures. Because many in vitro platforms for biomedical applications are made of thermoplastic polymers (TP), a simple and leak-free method for bonding NF membranes onto TP platforms is essential. Here, we propose a facile but leak-free localized thermal bonding method for integrating 2D or 3D-structured NF membrane onto a TP supporting substrate while preserving the pristine nanofibrous structure of the membrane, based on localized preheating of the substrate. A methodology for determining the optimal preheating temperature was devised based on a numerical simulation model considering the melting temperature of the NF material and was experimentally validated by evaluating bonding stability and durability under cell culture conditions. The thermally-bonded interface between the NF membrane and TP substrate was maintained stably for 3 weeks allowing the successful construction of an intestinal barrier model. The applicability of the localized thermal bonding method was also demonstrated on various combinations of TP materials (e.g., polystyrene and polymethylmethacrylate) and geometries of the supporting substrate, including a culture insert and microfluidic chip. We expect the proposed localized thermal bonding method to contribute toward broadening and realizing the practical applications of functional NF membranes in various biomedical fields.

4.
Biomaterials ; 293: 121983, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610323

RESUMO

The basement membrane (BM) of the blood-brain barrier (BBB), a thin extracellular matrix (ECM) sheet underneath the brain microvascular endothelial cells (BMECs), plays crucial roles in regulating the unique physiological barrier function of the BBB, which represents a major obstacle for brain drug delivery. Owing to the difficulty in mimicking the unique biophysical and chemical features of BM in in vitro systems, current in vitro BBB models have suffered from poor physiological relevance. Here, we describe a highly ameliorated human BBB model accomplished by an ultra-thin ECM hydrogel-based engineered basement membrane (nEBM), which is supported by a sparse electrospun nanofiber scaffold that offers in vivo BM-like microenvironment to BMECs. BBB model reconstituted on a nEBM recapitulates the physical barrier function of the in vivo human BBB through ECM mechano-response to physiological relevant stiffness (∼500 kPa) and exhibits high efflux pump activity. These features of the proposed BBB model enable modelling of ischemic stroke, reproducing the dynamic changes of BBB, immune cell infiltration, and drug response. Therefore, the proposed BBB model represents a powerful tool for predicting the BBB permeation of drugs and developing therapeutic strategies for brain diseases.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Barreira Hematoencefálica/fisiologia , Células Endoteliais/fisiologia , Encéfalo/fisiologia , Células Cultivadas , Membrana Basal
5.
Biomicrofluidics ; 16(5): 051301, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36275917

RESUMO

Porous membrane-based microfluidic chips are frequently used for developing in vitro tissue-barrier models, the so-called tissue barriers-on-chips (TBoCs). The porous membrane in a TBoC plays a crucial role as an alternative to an in vivo basement membrane (BM). To improve the physiological relevance of an artificial porous membrane, it should possess complex BM-like characteristics from both biophysical and biochemical perspectives. For practical use, artificial membranes should have high mechanical robustness, and their fabrication processes should be conducive to mass production. There have been numerous approaches to accomplishing these requirements in BM-like porous membranes. Extracellular matrix (ECM) hydrogels have emerged as physiologically relevant materials for developing artificial BMs; they remarkably improve the phenotypes and functions of both cells and their layers when compared to previous synthetic porous membranes. However, for practical use, the poor mechanical robustness of ECM membranes needs to be improved. Recently, an advanced ECM membrane reinforced with a nanofiber scaffold has been introduced that possesses both BM-like characteristics and practical applicability. This advanced ECM membrane is expected to promote not only in vivo-like cellular functions but also cellular responses to drugs, which in turn further facilitates the practical applications of TBoCs.

6.
Pharmaceutics ; 14(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35214135

RESUMO

Although pancreatic islet transplantation is a potentially curative treatment for insulin-dependent diabetes, a shortage of donor sources, low differentiation capacity, and transplantation efficacy are major hurdles to overcome before becoming a standard therapy. Stem cell-derived insulin-producing cells (IPCs) are a potential approach to overcoming these limitations. To improve the differentiation capacity of the IPCs, cell cluster formation is crucial to mimic the 3D structure of the islet. This study developed a biodegradable polycaprolactone (PCL) electrospun nanofibrous (NF) microwell-arrayed membrane permeable to soluble factors. Based on the numerical analysis and experimental diffusion test, the NF microwell could provide sufficient nutrients, unlike an impermeable PDMS (polydimethylsiloxane) microwell. The IPC clusters in the NF microwells showed higher gene expression of insulin and PDX1 and insulin secretion than the PDMS microwells. The IPC clusters in the NF microwell-arrayed membrane could be directly transplanted. Transplanted IPC clusters in the microwells survived well and expressed PDX1 and insulin. Additionally, human c-peptide was identified in the blood plasma at two months after transplantation of the membranes. The NF microwell-arrayed membrane can be a new platform promoting IPC differentiation capacity and realizing an in situ transplantation technique for diabetic patients.

7.
Biofabrication ; 14(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062009

RESUMO

An extracellular matrix (ECM) membrane made up of ECM hydrogels has great potentials to develop a physiologically relevant organ-on-a-chip because of its biochemical and biophysical similarity toin vivobasement membranes (BMs). However, the limited mechanical stability of the ECM hydrogels makes it difficult to utilize the ECM membrane in long-term and dynamic cell/tissue cultures. This study proposes a thin but robust and transparent ECM membrane reinforced with silk fibroin (SF)/polycaprolactone (PCL) nanofibers, which is achieved byin situself-assembly throughout a freestanding SF/PCL nanofiber scaffold. The SF/PCL nanofiber-reinforced ECM (NaRE) membrane shows biophysical characteristics reminiscent of native BMs, including small thickness (<5µm), high permeability (<9 × 10-5cm s-1), and nanofibrillar architecture (∼10-100 nm). With the BM-like characteristics, the nanofiber reinforcement ensured that the NaRE membrane stably supported the construction of various types ofin vitrobarrier models, from epithelial or endothelial barrier models to complex co-culture models, even over two weeks of cell culture periods. Furthermore, the stretchability of the NaRE membrane allowed emulating the native organ-like cyclic stretching motions (10%-15%) and was demonstrated to manipulate the cell and tissue-level functions of thein vitrobarrier model.


Assuntos
Fibroínas , Nanofibras , Matriz Extracelular/metabolismo , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais
8.
Lab Chip ; 21(17): 3316-3327, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323906

RESUMO

Here, we report a multiplex culture system that enables simultaneous recreation of multiple replications of the three-dimensional (3D) microarchitecture of the human intestinal epithelium in vitro. The "basolateral convective flow-generating multi-well insert platform (BASIN)" contains 24 nano-porous inserts and an open basolateral chamber applying controllable convective flow in the basolateral compartment that recreates a biomimetic morphogen gradient using a conventional orbital shaker. The mechanistic approach by which the removal of morphogen inhibitors in the basolateral medium can induce intestinal morphogenesis was applied to manipulate the basolateral convective flow in space and time. In a multiplex BASIN, we successfully regenerated a 3D villi-like intestinal microstructure using the Caco-2 human intestinal epithelium that presents high barrier function with minimal insert-to-insert variations. The enhanced cytodifferentiation and proliferation of the 3D epithelial layers formed in the BASIN were visualized with markers of absorptive (villin) and proliferative cells (Ki67). The paracellular transport and efflux profiles of the microengineered 3D epithelial layers in the BASIN confirmed its reproducibility, robustness, and scalability for multiplex biochemical or pharmaceutical studies. Finally, the BASIN was used to investigate the effects of dextran sodium sulfate on the intestinal epithelial barrier and morphology to validate its practical applicability for investigating the effects of external chemicals on the intestinal epithelium and constructing a leaky-gut model. We envision that the BASIN may provide an improved multiplex, scalable, and physiological intestinal epithelial model that is readily accessible to researchers in both basic and applied sciences.


Assuntos
Mucosa Intestinal , Recreação , Células CACO-2 , Humanos , Morfogênese , Reprodutibilidade dos Testes
9.
Biofabrication ; 13(3)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34030141

RESUMO

Despite the potential of a nanofibrous (NF) microwell array as a permeable microwell array to improve the viability and functions of spheroids, thanks to the superior permeability to both gases and solutes, there have still been difficulties regarding the stable formation of spheroids in the NF microwell array due to the low aspect ratio (AR) and the large interspacing between microwells. This study proposes a nanofibrous oval-shaped microwell array, named the NOVA microwell array, with both a high AR and a high well density, enabling us to not only collect cells in the microwell with a high cell seeding efficiency, but also to generate multiple viable and functional spheroids in a uniform and stable manner. To realize a deep NOVA microwell array with a high aspect ratio (AR = 0.9) and a high well density (494 wells cm-2), we developed a matched-mold thermoforming process for the fabrication of both size- and AR-controllable NOVA microwell arrays with various interspacing between microwells while maintaining the porous nature of the NF membrane. The human hepatocellular carcinoma (HepG2) cell spheroids cultured on the deep NOVA microwell array not only had uniform size and shape, with a spheroid circularity of 0.80 ± 0.03 at a cell seeding efficiency of 94.29 ± 9.55%, but also exhibited enhanced viability with a small fraction of dead cells and promoted functionality with increased albumin secretion, compared with the conventional impermeable microwell array. The superior characteristics of the deep NOVA microwell array, i.e. a high AR, a high well density, and a high permeability, pave the way to the production of various viable and functional spheroids and even organoids in a scalable manner.


Assuntos
Nanofibras , Técnicas de Cultura de Células , Células Hep G2 , Humanos , Porosidade , Esferoides Celulares
10.
ACS Macro Lett ; 10(11): 1398-1403, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35549015

RESUMO

In vitro artery models constructed on a membrane-based microfluidic chip, called an artery-on-a-chip, have been spotlighted as a powerful platform for studying arterial physiology. However, due to the use of a flat and porous membrane that cannot mimic the in vivo internal elastic lamina (IEL), the physiological similarity in the phenotypes and the arrangements of the endothelial cells (ECs) and aortic smooth muscle cells (AoSMCs) has been limited in the previously developed artery-on-a-chips. Herein, we developed an innovative membrane mimicking the structures of IEL by utilizing electrospun aligned silk fibroin/polycaprolactone nanofiber membranes. An arterial IEL-mimicking (AIM) membrane was about 5 µm thick and composed of orthogonally aligned nanofibers with a diameter of around 400 nm, which were highly comparable to the IEL. Such structural similarity was found to induce the ECs and SMCs to be elongated and orthogonally aligned as in the in vivo artery. In particular, the SMCs cultured on the AIM membrane maintained a healthy state showing increased αSMA mRNA expression, which was easily lost on the conventional membrane. We constructed an AIM membrane-integrated artery-on-a-chip having an orthogonal arrangement of ECs and SMCs, which was desirable but difficult to be realized with the previous artery-on-a-chip.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Artérias/metabolismo , Sinais (Psicologia) , Dispositivos Lab-On-A-Chip , Músculo Liso Vascular/metabolismo
11.
ACS Macro Lett ; 10(7): 965-970, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549208

RESUMO

Although direct electrospinning has been frequently utilized to develop a nanofiber membrane-integrated microfluidic chip, the dielectric substrate material retards the deposition of electrospun nanofibers on the substrate, and the rough surface formed by deposited nanofibers hinders the successful sealing. In this study we introduce a facile fabrication process of an electrospun nanofiber membrane-integrated polydimethylsiloxane (PDMS) microfluidic chip, called a NFM-PDMS chip, by applying the functional layer. The functional layer consists of a silver nanowires (AgNWs)-embedded uncured PDMS adhesive layer (SNUP), which not only effectively concentrates the electric field toward the PDMS substrate, but also provides a smooth surface for robust sealing. The AgNWs in the SNUP play a crucial role as a grounded collector and enable approximately 4× faster electrospinning than the conventional method, forming a free-standing nanofiber membrane. The uncured PDMS adhesive layer in the SNUP maintains the smooth surface after electrospinning and allows the rapid and leakage-free bonding of the NFM-PDMS chip using plasma treatment. A practical application of the NFM-PDMS chip is demonstrated by culturing the human keratinocyte cell line, HaCaT cells. The HaCaT cells are well grown on the free-standing nanofiber membrane under dynamic flow conditions, maintaining good viability over 95% for 7 days of culture.


Assuntos
Nanofibras , Nanofios , Adesivos , Dimetilpolisiloxanos , Humanos , Microfluídica , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA