Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecology ; 99(7): 1671-1681, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729181

RESUMO

Woody plant encroachment into grasslands is a major land cover change taking place in many regions of the world, including arctic, alpine and desert ecosystems. This change in plant dominance is also affecting coastal ecosystems, including barrier islands, which are known for being vulnerable to the effects of climate change. In the last century, the woody plant species Morella cerifera L. (Myricaceae), has encroached into grass covered swales in many of the barrier islands of Virginia along the Atlantic seaboard. The abrupt shift to shrub cover in these islands could result from positive feedbacks with the physical environment, though the underlying mechanisms remain poorly understood. We use a combination of experimental and modeling approaches to investigate the role of climate warming and the ability of M. cerifera to mitigate its microclimate thereby leading to the emergence of alternative stable states in barrier island vegetation. Nighttime air temperatures were significantly higher in myrtle shrublands than grasslands, particularly in the winter season. The difference in the mean of the 5% and 10% lowest minimum temperatures between shrubland and grassland calculated from two independent datasets ranged from 1.3 to 2.4°C. The model results clearly show that a small increase in near-surface temperature can induce a non-linear shift in ecosystem state from a stable state with no shrubs to an alternative stable state dominated by M. cerifera. This modeling framework improves our understanding and prediction of barrier island vegetation stability and resilience under climate change, and highlights the existence of important nonlinearities and hystereses that limit the reversibility of this ongoing shift in vegetation dominance.


Assuntos
Ecossistema , Pradaria , Regiões Árticas , Ilhas , Poaceae
2.
Int J Phytoremediation ; 19(1): 56-64, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27483131

RESUMO

Quantifying vegetation response to explosive compounds has focused predominantly on morphological impacts and uptake efficiency. A more comprehensive understanding of the total impacts of explosives on vegetation can be gained using a multivariate approach. We hypothesized that multiple variables representing morphological and physiological responses will more clearly differentiate species and treatments than any single variable. Individuals of three plant species were placed in soils contaminated with Composition B, which comprises 60% hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 40% 2,4,6-trinitrotoluene (TNT), and grown for 2 months. Response metrics used included photosynthetic operation, water relations, growth characteristics, as well as nitrogen and carbon concentrations and isotopic compositions. Individual metrics showed high variability in response across the three species tested. Water relations and nitrogen isotopic composition exhibited the most consistent response across species. By comparing multiple variables simultaneously, better separation of both species and exposure was observed. The inclusion of novel metrics can reinforce previously established concepts and provide a new perspective. Additionally, the inclusion of various other metrics can greatly increase the ability to identify and differentiate particular groups. By using multivariate analyses and standard vegetation metrics, new aspects of the vegetation response to explosive compounds can be identified.


Assuntos
Poluentes Ambientais/toxicidade , Substâncias Explosivas/toxicidade , Plantas/efeitos dos fármacos , Triazinas/toxicidade , Trinitrotolueno/toxicidade , Cyperus/anatomia & histologia , Cyperus/efeitos dos fármacos , Cyperus/fisiologia , Plantas/anatomia & histologia , Plantas/metabolismo , Ulmus/anatomia & histologia , Ulmus/efeitos dos fármacos , Ulmus/fisiologia , Vitis/anatomia & histologia , Vitis/efeitos dos fármacos , Vitis/fisiologia
3.
Ecotoxicology ; 24(1): 194-201, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25336045

RESUMO

Soils contaminated with explosive compounds occur on a global scale. Research demolition explosive (RDX) (hexahydro-1,3,5-trinitro-1,3,5-triazine) and trinitrotoluene (TNT) (2-methyl-1,3,5-trinitrobenzene) are the most common explosive compounds in the environment. These compounds, by variably impacting plant health, can affect species establishment in contaminated areas. Our objective was to quantify comparative effects of RDX and TNT on a woody shrub, Morella cerifera, commonly found on bombing ranges along the Atlantic Coast of the United States. Two life stages of M. cerifera, Seeds and juvenile plants, were exposed to soil amended with concentrations of RDX and TNT representative of field levels; RDX up to 1,500 ppm and TNT up to 900 ppm. Percent germination was recorded for 3 weeks; morphological metrics of necrotic, reduced, and curled leaves, in addition to shoot length and number measured at the end of the experiment (8 weeks) for juvenile plants. All concentrations of RDX inhibited seed germination while TNT did not have an effect at any concentration. As contaminant concentration increased, significant increases in seedling morphological damage occurred in the presence of RDX, whereas TNT did not affect seedling morphology at any concentration. Overall the plants were more sensitive to the presence of RDX. Species specific responses to explosive compounds in the soil have the potential to act as a physiological filter, altering plant recruitment and establishment. This filtering of species may have a number of large scale impacts including: altering species composition and ecological succession.


Assuntos
Germinação/efeitos dos fármacos , Myricaceae/efeitos dos fármacos , Sementes/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triazinas/toxicidade , Trinitrotolueno/toxicidade , Substâncias Explosivas/toxicidade , Myricaceae/anatomia & histologia , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos
4.
PLoS One ; 9(8): e104747, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25148028

RESUMO

Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed) barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae) on both islands while active overwash zones were dominated by Spartina patens (Aiton) Muhl. (Poaceae) on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005) where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected community composition. Thus, factors driving the abundance of dune-building grasses and subsequent recovery of dunes varied between the two geomorphically distinct islands.


Assuntos
Tempestades Ciclônicas , Sedimentos Geológicos , Ilhas , Poaceae , Biodiversidade , Ecossistema , Virginia
5.
Ecology ; 90(4): 1021-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19449696

RESUMO

Ecological consequences of shrub encroachment are emerging as a key issue in the study of global change. In mesic grasslands, shrub encroachment can result in a fivefold increase in ecosystem leaf area index (LAI) and a concurrent reduction in understory light and herbaceous diversity. LAI and light attenuation are often higher for shrub thickets than for forest communities in the same region, yet little is known about the contribution of sunflecks in shrub-dominated systems. Our objective was to compare fine-scale spatial and temporal dynamics of understory light in shrub thickets to the light environment in typical forest communities. We used an array of quantum sensors to examine variation in diffuse and direct light and determined the relative contribution of sunflecks during midday in Morella cerifera shrub thickets, a 30-yr-old abandoned Pinus taeda plantation, and a mature, second-growth, deciduous forest. Instantaneous photosynthetic photon flux density (PPFD) was measured at 1-s intervals at five sites in each community during midday. In summer, understory light during midday in shrub thickets was approximately 0.8% of above-canopy light, compared to 1.9% and 5.4% in pine and deciduous forests, respectively. During summer, PPFD was uncorrelated between sensors as close as 0.075 m in shrub thickets compared to 0.175 m and 0.900 m in pine and deciduous forests, respectively, indicating that sunflecks in shrub thickets were generally small compared to sunflecks in the two forests. Sunflecks in shrub thickets were generally short (all <30 s) and relatively low in intensity (<150 micromol photons x m(-2) x s(-1)) and contributed only 5% of understory light during midday. Sunflecks were longer (up to 6 minutes) and more intense (up to 350 micromol photons x m(-2) x s(-1)) in the two forest communities and Contributed 31% and 22% of understory light during midday in pine and deciduous forest, respectively. The combination of high LAI and relatively short-stature of M. cerifera shrub thickets produces a dense canopy that reduces both diffuse light and the occurrence of sunflecks. The lack of sunflecks may limit the number of microsites with a favorable light environment and contribute to the reduction in understory cover and diversity within the shrub thickets.


Assuntos
Ecossistema , Myricaceae/fisiologia , Luz Solar , Árvores , Geografia , Virginia
6.
Oecologia ; 155(2): 337-45, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18040723

RESUMO

Woody encroachment into herbaceous ecosystems is emerging as an important ecological response to global change. A primary concern is alterations in C and N cycling and associated variations across a variety of ecosystems. We quantified seasonal variation in litterfall and litter N concentration in Morella cerifera shrub thickets to assess changes in litterfall and associated N input after shrub expansion on an Atlantic coast barrier island. We also used the natural abundance of (15)N to estimate the proportion of litterfall N originating from symbiotic N fixation. Litterfall for shrub thickets ranged from 8,991 +/- 247 to 3,810 +/- 399 kg ha(-1) year(-1) and generally declined with increasing thicket age. Litterfall in three of the four thickets exceeded previous estimates of aboveground annual net primary production in adjacent grasslands by 300-400%. Leaf N concentration was also higher after shrub expansion and, coupled with low N resorption efficiency and high litterfall, resulted in a return of as much as 169 kg N ha(-1) year(-1) to the soil. We estimated that approximately 70% of N returned to the soil was from symbiotic N fixation resulting in an ecosystem input of between 37 and 118 kg ha(-1) year(-1) of atmospheric N depending on site. Considering the extensive cover of shrub thickets on Virginia barrier islands, N fixation by shrubs is likely the largest single source of N to the system. The shift from grassland to shrub thicket on barrier islands results in a substantial increase in litterfall and foliar N concentration that will likely have a major impact on the size and cycling of ecosystem C and N pools. Increasing C and N availability in these nutrient-poor soils is likely to permanently reduce cover of native grasses and alter community structure by favoring species with greater N requirements.


Assuntos
Carbono/análise , Ecossistema , Myricaceae/química , Nitrogênio/análise , Solo/análise , Actinobacteria/metabolismo , Fixação de Nitrogênio/fisiologia , Isótopos de Nitrogênio/análise , Folhas de Planta/química , Poaceae/química , Estações do Ano , Virginia
7.
Ecology ; 88(2): 524-30, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17479769

RESUMO

There is increasing interest in the changes in ecosystem services that accompany the conversion of grasslands to shrub-dominated communities. Shrub structure and associated effects on the light environment may be especially important in affecting productivity and diversity. Leaf-area index (LAI) and understory light levels of Morella cerifera shrub thickets were assessed on Hog Island, Virginia, USA, at four sites along a soil chronosequence. LAI was estimated from annual leaf litter, with allometric models relating stem diameter to leaf area, with a portable integrating radiometer (LI-COR LAI-2000), and from photosynthetically active radiation (PAR) using the Beer-Lambert law. For the two youngest thickets, LAI estimates from leaf litter (approximately 10.0) approached levels often associated with tropical rain forest. Allometric models estimated LAI values at 9.8 and 12.5 for the same thickets. High LAI in thickets also results in high light attenuation. Light levels within thickets were as low as 0.7% of above-canopy PAR in the youngest thicket. These data suggest that M. cerifera shrub thickets have a very high potential for annual net primary production. Furthermore, extreme modification of the light environment, coupled with heavy shrub litter fall, may exclude potential competitors during thicket establishment and rapidly alter community structure and ecosystem function.


Assuntos
Escuridão , Myricaceae/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Ecologia/métodos , Ecossistema , Virginia
8.
Physiol Plant ; 131(3): 422-33, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18251881

RESUMO

Effects of salinity and drought on physiology and chlorophyll fluorescence were used to evaluate stress in two coastal plants, Myrica cerifera (L.) and Phragmites australis (Cav.) Trin. ex Steud. Drought and salinity stress were induced and measurements of stomatal conductance, photosynthesis, xylem pressure potential (psi) and fluorescence were conducted following treatment. The onset of stress began at 2 g l(-1) for M. cerifera, and 5 g l(-1) for P. australis, as seen by significant decreases in physiological measurements. Despite the physiological effects of salinity, there was no significant difference in dark-adapted fluorescence (F(v)/F(m), where F(m) is the maximal fluorescence in dark-adapted leaves) for either species at any salinity level. Significant decreases in the light-adapted measurement Delta F/F'(m) (F'(m) is maximal fluorescence in light-adapted leaves) occurred at 10 g l(-1) in M. cerifera and P. australis, days before visible stress was evident. The quantum yield of xanthophyll-regulated thermal energy dissipation (Phi(NPQ), where NPQ is non-photochemical quenching of chlorophyll fluorescence) increased with decreasing Delta F/F'(m). Drought studies showed similar results, with significant decreases in physiological measurements occurring by day 2 in M. cerifera and day 4 in P. australis. Differences in Delta F/F'(m) were seen by day 5 for both species, whereas F(v)/F(m) showed no indication of stress, despite apparent visible signs. Xanthophyll-cycle-dependent energy dissipation may be the underlying mechanism in protecting photosystem II from excess energy in salinity- and drought-treated plants.


Assuntos
Clorofila/metabolismo , Desastres , Folhas de Planta/metabolismo , Cloreto de Sódio/farmacologia , Clorofila/química , Fluorescência , Myricaceae/efeitos dos fármacos , Myricaceae/metabolismo , Myricaceae/fisiologia , Oceanos e Mares , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Poaceae/fisiologia , Especificidade da Espécie , Xilema/efeitos dos fármacos , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA