Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Mol Ecol Resour ; : e14025, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364691

RESUMO

Amphibians are the most threatened group of vertebrates and are in dire need of conservation intervention to ensure their continued survival. They exhibit unique features including a high diversity of reproductive strategies, permeable and specialized skin capable of producing toxins and antimicrobial compounds, multiple genetic mechanisms of sex determination and in some lineages, the ability to regenerate limbs and organs. Although genomic approaches would shed light on these unique traits and aid conservation, sequencing and assembly of amphibian genomes has lagged behind other taxa due to their comparatively large genome sizes. Fortunately, the development of long-read sequencing technologies and initiatives has led to a recent burst of new amphibian genome assemblies. Although growing, the field of amphibian genomics suffers from the lack of annotation resources, tools for working with challenging genomes and lack of high-quality assemblies in multiple clades of amphibians. Here, we analyse 51 publicly available amphibian genomes to evaluate their usefulness for functional genomics research. We report considerable variation in genome assembly quality and completeness and report some of the highest transposable element and repeat contents of any vertebrate. Additionally, we detected an association between transposable element content and climatic variables. Our analysis provides evidence of conserved genome synteny despite the long divergence times of this group, but we also highlight inconsistencies in chromosome naming and orientation across genome assemblies. We discuss sequencing gaps in the phylogeny and suggest key targets for future sequencing endeavours. Finally, we propose increased investment in amphibian genomics research to promote their conservation.

2.
Int J Parasitol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168434

RESUMO

Millions of livestock animals worldwide are infected with the haematophagous barber's pole worm, Haemonchus contortus, the aetiological agent of haemonchosis. Despite the major significance of this parasite worldwide and its widespread resistance to current treatments, the lack of a high-quality genome for the well-defined strain of this parasite from Australia, called Haecon-5, has constrained research in a number of areas including host-parasite interactions, drug discovery and population genetics. To enable research in these areas, we report here a chromosome-contiguous genome (∼280 Mb) for Haecon-5 with high-quality models for 19,234 protein-coding genes. Comparative genomic analyses show significant genomic similarity (synteny) with a UK strain of H. contortus, called MHco3(ISE).N1 (abbreviated as "ISE"), but we also discover marked differences in genomic structure/gene arrangements, distribution of nucleotide variability (single nucleotide polymorphisms (SNPs) and indels) and orthology between Haecon-5 and ISE. We used the genome and extensive transcriptomic resources for Haecon-5 to predict a subset of essential single-copy genes employing a "cross-species" machine learning (ML) approach using a range of features from nucleotide/protein sequences, protein orthology, subcellular localisation, single-cell RNA-seq and/or histone methylation data available for the model organisms Caenorhabditis elegans and Drosophila melanogaster. From a set of 1,464 conserved single copy genes, transcribed in key life-cycle stages of H. contortus, we identified 232 genes whose homologs have critical functions in C. elegans and/or D. melanogaster, and prioritised 10 of them for further characterisation; nine of the 10 genes likely play roles in neurophysiological processes, germline, hypodermis and/or respiration, and one is an unknown (orphan) gene for which no detailed functional information exists. Future studies of these genes/gene products are warranted to elucidate their roles in parasite biology, host-parasite interplay and/or disease. Clearly, the present Haecon-5 reference genome and associated resources now underpin a broad range of fundamental investigations of H. contortus and could assist in accelerating the discovery of novel intervention targets and drug candidates to combat haemonchosis.

3.
Comput Struct Biotechnol J ; 23: 3081-3089, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39185442

RESUMO

Detailed explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have substantially improved our knowledge and understanding of biological processes and pathways in metazoan organisms. Extensive functional genomic and multi-omic data sets have enabled the discovery and characterisation of 'essential' genes that are critical for the survival of these organisms. Recently, we showed that a machine learning (ML)-based pipeline could be utilised to predict essential genes in both C. elegans and D. melanogaster using features from DNA, RNA, protein and/or cellular data or associated information. As these distantly-related species are within the Ecdysozoa, we hypothesised that this approach could be suited for non-model organisms within the same group (phylum) of protostome animals. In the present investigation, we cross-predicted essential genes within the phylum Nematoda - between C. elegans and the parasitic filarial nematodes Brugia malayi and Onchocerca volvulus, and then ranked and prioritised these genes. Highly ranked genes were linked to key biological pathways or processes, such as ribosome biogenesis, translation and RNA processing, and were expressed at relatively high levels in the germline, gonad, hypodermis and/or nerves. The present in silico workflow is hoped to expedite the identification of drug targets in parasitic organisms for subsequent experimental validation in the laboratory.

4.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39201452

RESUMO

Haemonchus contortus (the barber's pole worm)-a highly pathogenic gastric nematode of ruminants-causes significant economic losses in the livestock industry worldwide. H. contortus has become a valuable model organism for both fundamental and applied research (e.g., drug and vaccine discovery) because of the availability of well-defined laboratory strains (e.g., MHco3(ISE).N1 in the UK and Haecon-5 in Australia) and genomic, transcriptomic and proteomic data sets. Many recent investigations have relied heavily on the use of the chromosome-contiguous genome of MHco3(ISE).N1 in the absence of a genome for Haecon-5. However, there has been no genetic comparison of these and other strains to date. Here, we assembled and characterised the mitochondrial genome (14.1 kb) of Haecon-5 and compared it with that of MHco3(ISE).N1 and two other strains (i.e., McMaster and NZ_Hco_NP) from Australasia. We detected 276 synonymous and 25 non-synonymous single nucleotide polymorphisms (SNPs) within Haecon-5. Between the Haecon-5 and MHco3(ISE).N1 strains, we recorded 345 SNPs, 31 of which were non-synonymous and linked to fixed amino acid differences in seven protein-coding genes (nad5, nad6, nad1, atp6, nad2, cytb and nad4) between these strains. Pronounced variation (344 and 435 SNPs) was seen between Haecon-5 and each of the other two strains from Australasia. The question remains as to what impact these mitogenomic mutations might have on the biology and physiology of H. contortus, which warrants exploration. The high degree of mitogenomic variability recorded here among these strains suggests that further work should be undertaken to assess the nature and extent of the nuclear genomic variation within H. contortus.


Assuntos
Genoma Mitocondrial , Haemonchus , Polimorfismo de Nucleotídeo Único , Animais , Haemonchus/genética , Filogenia , Variação Genética , Austrália
5.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000124

RESUMO

Over the years, comprehensive explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have contributed substantially to our understanding of complex biological processes and pathways in multicellular organisms generally. Extensive functional genomic-phenomic, genomic, transcriptomic, and proteomic data sets have enabled the discovery and characterisation of genes that are crucial for life, called 'essential genes'. Recently, we investigated the feasibility of inferring essential genes from such data sets using advanced bioinformatics and showed that a machine learning (ML)-based workflow could be used to extract or engineer features from DNA, RNA, protein, and/or cellular data/information to underpin the reliable prediction of essential genes both within and between C. elegans and D. melanogaster. As these are two distantly related species within the Ecdysozoa, we proposed that this ML approach would be particularly well suited for species that are within the same phylum or evolutionary clade. In the present study, we cross-predicted essential genes within the phylum Nematoda (evolutionary clade V)-between C. elegans and the pathogenic parasitic nematode H. contortus-and then ranked and prioritised H. contortus proteins encoded by these genes as intervention (e.g., drug) target candidates. Using strong, validated predictors, we inferred essential genes of H. contortus that are involved predominantly in crucial biological processes/pathways including ribosome biogenesis, translation, RNA binding/processing, and signalling and which are highly transcribed in the germline, somatic gonad precursors, sex myoblasts, vulva cell precursors, various nerve cells, glia, or hypodermis. The findings indicate that this in silico workflow provides a promising avenue to identify and prioritise panels/groups of drug target candidates in parasitic nematodes for experimental validation in vitro and/or in vivo.


Assuntos
Caenorhabditis elegans , Genes Essenciais , Haemonchus , Aprendizado de Máquina , Animais , Haemonchus/genética , Caenorhabditis elegans/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Biologia Computacional/métodos , Drosophila melanogaster/genética
6.
Parasit Vectors ; 17(1): 283, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956636

RESUMO

BACKGROUND: Lymnaeid snails of the genus Austropeplea are an important vector of the liver fluke (Fasciola hepatica), contributing to livestock production losses in Australia and New Zealand. However, the species status within Austropeplea is ambiguous due to heavy reliance on morphological analysis and a relative lack of genetic data. This study aimed to characterise the mitochondrial genome of A. cf. brazieri, an intermediate host of liver fluke in eastern Victoria. METHODS: The mitochondrial genome was assembled and annotated from a combination of second- and third-generation sequencing data. For comparative purposes, we performed phylogenetic analyses of the concatenated nucleotide sequences of the mitochondrial protein-coding genes, cytochrome c oxidase subunit 1 and 16S genes. RESULTS: The assembled mt genome was 13,757 base pairs and comprised 37 genes, including 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The mt genome length, gene order and nucleotide compositions were similar to related species of lymnaeids. Phylogenetic analyses of the mt nucleotide sequences placed A. cf. brazieri within the same clade as Orientogalba ollula with strong statistical supports. Phylogenies of the cox1 and 16S mt sequences were constructed due to the wide availability of these sequences representing the lymnaeid taxa. As expected in both these phylogenies, A. cf. brazieri clustered with other Austropeplea sequences, but the nodal supports were low. CONCLUSIONS: The representative mt genome of A. cf. brazieri should provide a useful resource for future molecular, epidemiology and parasitological studies of this socio-economically important lymnaeid species.


Assuntos
Genoma Mitocondrial , Filogenia , Caramujos , Animais , Genoma Mitocondrial/genética , Caramujos/parasitologia , Austrália , Fasciola hepatica/genética , Fasciola hepatica/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Vetores de Doenças , Análise de Sequência de DNA
7.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000473

RESUMO

Nematodes of the genus Trichinella are important pathogens of humans and animals. This study aimed to enhance the genomic and transcriptomic resources for T. pseudospiralis (non-encapsulated phenotype) and T. spiralis (encapsulated phenotype) and to explore transcriptional profiles. First, we improved the assemblies of the genomes of T. pseudospiralis (code ISS13) and T. spiralis (code ISS534), achieving genome sizes of 56.6 Mb (320 scaffolds, and an N50 of 1.02 Mb) and 63.5 Mb (568 scaffolds, and an N50 value of 0.44 Mb), respectively. Then, for each species, we produced RNA sequence data for three key developmental stages (first-stage muscle larvae [L1s], adults, and newborn larvae [NBLs]; three replicates for each stage), analysed differential transcription between stages, and explored enriched pathways and processes between species. Stage-specific upregulation was linked to cellular processes, metabolism, and host-parasite interactions, and pathway enrichment analysis showed distinctive biological processes and cellular localisations between species. Indeed, the secreted molecules calmodulin, calreticulin, and calsyntenin-with possible roles in modulating host immune responses and facilitating parasite survival-were unique to T. pseudospiralis and not detected in T. spiralis. These insights into the molecular mechanisms of Trichinella-host interactions might offer possible avenues for developing new interventions against trichinellosis.


Assuntos
Transcriptoma , Trichinella spiralis , Trichinella , Animais , Trichinella spiralis/genética , Trichinella/genética , Genômica/métodos , Genoma Helmíntico , Perfilação da Expressão Gênica/métodos , Larva/genética , Larva/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Especificidade da Espécie , Interações Hospedeiro-Parasita/genética , Triquinelose/parasitologia , Triquinelose/genética
8.
Vet Microbiol ; 294: 110119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772075

RESUMO

Mycoplasma synoviae causes infectious synovitis and respiratory tract infections in chickens and is responsible for significant economic losses in the poultry industry. Effective attachment and colonisation of the trachea is critical for the persistence of the organism and progression of the disease it causes. The respiratory tract infection is usually sub-clinical, but concurrent infection with infectious bronchitis virus (IBV) is known to enhance the pathogenicity of M. synoviae. This study aimed to explore differentially expressed genes in the tracheal mucosa, and their functional categories, during chronic infection with M. synoviae, using a M. synoviae-IBV infection model. The transcriptional profiles of the trachea were assessed 2 weeks after infection using RNA sequencing. In chickens infected with M. synoviae or IBV, only 1 or 8 genes were differentially expressed compared to uninfected chickens, respectively. In contrast, the M. synoviae-IBV infected chickens had 621 upregulated and 206 downregulated genes compared to uninfected chickens. Upregulated genes and their functional categories were suggestive of uncontrolled lymphoid cell proliferation and an ongoing pro-inflammatory response. Genes associated with anti-inflammatory effects, pathogen removal, apoptosis, regulation of the immune response, airway homoeostasis, cell adhesion and tissue regeneration were downregulated. Overall, transcriptional changes in the trachea, 2 weeks after infection with M. synoviae and IBV, indicate immune dysregulation, robust inflammation and a lack of cytotoxic damage during chronic infection. This model provides insights into the pathogenesis of chronic infection with M. synoviae.


Assuntos
Galinhas , Infecções por Mycoplasma , Mycoplasma synoviae , Doenças das Aves Domésticas , Traqueia , Animais , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/imunologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Mycoplasma synoviae/genética , Traqueia/microbiologia , Traqueia/virologia , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/fisiologia , Doença Crônica , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Transcriptoma , Perfilação da Expressão Gênica , Coinfecção/veterinária , Coinfecção/microbiologia , Coinfecção/virologia
9.
Comput Struct Biotechnol J ; 23: 1026-1035, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38435301

RESUMO

Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.

10.
Vet Microbiol ; 291: 110029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364466

RESUMO

The antimicrobial tylosin is commonly used to control mycoplasma infections, sometimes in combination with vaccination. However, the efficacy of a live mycoplasma vaccine, when combined with subsequent antimicrobial treatment, against the effects of subsequent infection with a virulent strain is unknown. This study employed differential gene expression analysis to evaluate the effects of tylosin on the protection provided by the live attenuated Vaxsafe MG ts-304 vaccine, which has been shown to be safe and to provide long-term protective immunity against infection with Mycoplasma gallisepticum. The transcriptional profiles of the tracheal mucosa revealed significantly enhanced inflammation, immune cell proliferation and adaptive immune responses in unvaccinated, untreated birds and in unvaccinated birds treated with tylosin 2 weeks after infection with virulent M. gallisepticum. These responses, indicative of the typical immune dysregulation caused by infection with M. gallisepticum, were less severe in the unvaccinated, tylosin-treated birds than in the unvaccinated, untreated birds. This was attributable to the effect of residual levels of tylosin in the tracheal mucosa on replication of virulent M. gallisepticum. These responses were not detected in vaccinated, tylosin-treated birds or in vaccinated, untreated birds after infection. The tracheal mucosal transcriptional profiles of these birds resembled those of unvaccinated, untreated, uninfected birds, suggesting a rapid and protective secondary immune response and effective vaccination. Overall, these results show that, although tylosin treatment reduced the duration of immunity, the initial protective immunity induced by Vaxsafe MG ts-304 lasted for at least 22 weeks after vaccination, even after the administration of tylosin for 16 weeks following vaccination.


Assuntos
Anti-Infecciosos , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Tilosina/farmacologia , Vacinas Bacterianas , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Vacinas Atenuadas
11.
BMC Microbiol ; 24(1): 28, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245715

RESUMO

BACKGROUND: Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. 'hongkongensis'. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies' (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott's test (MKT). RESULTS: We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. 'hongkongensis'. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. CONCLUSIONS: Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT' small and portable MinION™ means that such methods could be deployed for field use.


Assuntos
Coinfecção , Filariose , Filarioidea , Humanos , Animais , Cães , Filarioidea/genética , Filariose/diagnóstico , Filariose/veterinária , Filariose/parasitologia , Brugia/genética , Wuchereria bancrofti/genética , Mamíferos
12.
Int J Parasitol Drugs Drug Resist ; 24: 100522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295619

RESUMO

Within the context of our anthelmintic discovery program, we recently identified and evaluated a quinoline derivative, called ABX464 or obefazimod, as a nematocidal candidate; synthesised a series of analogues which were assessed for activity against the free-living nematode Caenorhabditis elegans; and predicted compound-target relationships by thermal proteome profiling (TPP) and in silico docking. Here, we logically extended this work and critically evaluated the anthelmintic activity of ABX464 analogues on Haemonchus contortus (barber's pole worm) - a highly pathogenic nematode of ruminant livestock. First, we tested a series of 44 analogues on H. contortus (larvae and adults) to investigate the nematocidal pharmacophore of ABX464, and identified one compound with greater potency than the parent compound and showed moderate activity against a select number of other parasitic nematodes (including Ancylostoma, Heligmosomoides and Strongyloides species). Using TPP and in silico modelling studies, we predicted protein HCON_00074590 (a predicted aldo-keto reductase) as a target candidate for ABX464 in H. contortus. Future work aims to optimise this compound as a nematocidal candidate and investigate its pharmacokinetic properties. Overall, this study presents a first step toward the development of a new nematocide.


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Quinolinas , Animais , Antinematódeos/farmacologia , Anti-Helmínticos/farmacologia , Relação Estrutura-Atividade , Caenorhabditis elegans , Quinolinas/farmacologia
13.
Mol Ecol Resour ; 24(2): e13878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837372

RESUMO

Apicomplexan haemoparasites generate significant morbidity and mortality in humans and other animals, particularly in many low-to-middle income countries. Malaria caused by Plasmodium remains responsible for some of the highest numbers of annual deaths of any human pathogen, whilst piroplasmids, such as Babesia and Theileria can have immense negative economic effects through livestock loss. Diagnosing haemoparasites via traditional methods like microscopy is challenging due to low-level and transient parasitaemia. PCR-based diagnostics overcome these limitations by being both highly sensitive and specific, but they may be unable to accurately detect coinfections or identify novel species. In contrast, next-generation sequencing (NGS)-based methods can characterize all pathogens from a group of interest concurrently, although, the short-read platforms previously used have been limited in the taxonomic resolution achievable. Here, we used Oxford Nanopore Technologies' (ONT) long-read MinION™ sequencer to conduct apicomplexan haemoparasite metabarcoding via sequencing the near full-length 18S ribosomal RNA gene, demonstrating its ability to detect Babesia, Hepatozoon, Neospora, Plasmodium, Theileria and Toxoplasma species. This method was tested on blood-extracted DNA from 100 dogs and the results benchmarked against qPCR and Illumina-based metabarcoding. For two common haemoparasites, nanopore sequencing performed as well as qPCR (kappa agreement statistics > 0.98), whilst also detecting one pathogen, Hepatozoon felis, missed by the other techniques. The long-reads obtained by nanopore sequencing provide an improved species-level taxonomic resolution whilst the method's broad applicability mean it can be used to explore apicomplexan communities from diverse mammalian hosts, on a portable sequencer that easily permits adaptation to field use.


Assuntos
Malária , Sequenciamento por Nanoporos , Nanoporos , Animais , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Mamíferos , Análise de Sequência de DNA/métodos
14.
Bioorg Med Chem ; 98: 117540, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134663

RESUMO

Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.


Assuntos
Anti-Helmínticos , Nematoides , Quinolinas , Animais , Humanos , Caenorhabditis elegans , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Relação Estrutura-Atividade
15.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38152979

RESUMO

The identification and characterization of essential genes are central to our understanding of the core biological functions in eukaryotic organisms, and has important implications for the treatment of diseases caused by, for example, cancers and pathogens. Given the major constraints in testing the functions of genes of many organisms in the laboratory, due to the absence of in vitro cultures and/or gene perturbation assays for most metazoan species, there has been a need to develop in silico tools for the accurate prediction or inference of essential genes to underpin systems biological investigations. Major advances in machine learning approaches provide unprecedented opportunities to overcome these limitations and accelerate the discovery of essential genes on a genome-wide scale. Here, we developed and evaluated a large language model- and graph neural network (LLM-GNN)-based approach, called 'Bingo', to predict essential protein-coding genes in the metazoan model organisms Caenorhabditis elegans and Drosophila melanogaster as well as in Mus musculus and Homo sapiens (a HepG2 cell line) by integrating LLM and GNNs with adversarial training. Bingo predicts essential genes under two 'zero-shot' scenarios with transfer learning, showing promise to compensate for a lack of high-quality genomic and proteomic data for non-model organisms. In addition, the attention mechanisms and GNNExplainer were employed to manifest the functional sites and structural domain with most contribution to essentiality. In conclusion, Bingo provides the prospect of being able to accurately infer the essential genes of little- or under-studied organisms of interest, and provides a biological explanation for gene essentiality.


Assuntos
Proteínas de Drosophila , Genes Essenciais , Camundongos , Animais , Proteômica , Drosophila melanogaster/genética , Fluxo de Trabalho , Redes Neurais de Computação , Proteínas/genética , Proteínas dos Microfilamentos/genética , Proteínas de Drosophila/genética
16.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569696

RESUMO

Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber's pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 "mixed" proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host-parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.


Assuntos
Haemonchus , Nematoides , Parasitos , Animais , Masculino , Feminino , Haemonchus/genética , Haemonchus/química , Haemonchus/metabolismo , Interações Hospedeiro-Parasita/genética , Peptídeo Hidrolases/metabolismo , Proteômica , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Endopeptidases/metabolismo , Informática
17.
Parasit Vectors ; 16(1): 279, 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37573420

RESUMO

BACKGROUND: Lucilia cuprina and L. sericata (family Calliphoridae) are globally significant ectoparasites of sheep. Current literature suggests that only one of these blowfly subspecies, L. cuprina dorsalis, is a primary parasite causing myiasis (flystrike) in sheep in Australia. These species and subspecies are difficult to distinguish using morphological features. Hence, being able to accurately identify blowflies is critical for diagnosis and for understanding their relationships with their hosts and environment. METHODS: In this study, adult blowflies (5 pools of 17 flies; n = 85) were collected from five locations in different states [New South Wales (NSW), Queensland (QLD), Tasmania (TAS), Victoria (VIC) and Western Australia (WA)] of Australia and their mitochondrial (mt) genomes were assembled. RESULTS: Each mt genome assembled was ~ 15 kb in size and encoded 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and a control region. The Lucilia species mt genomes were conserved in structure, and the genes retained the same order and direction. The overall nucleotide composition was heavily biased towards As and Ts-77.7% of the whole genomes. Pairwise nucleotide diversity suggested divergence between Lucilia cuprina cuprina, L. c. dorsalis and L. sericata. Comparative analyses of these mt genomes with published data demonstrated that the blowflies collected from sheep farm in TAS clustered within a clade with L. sericata. The flies collected from an urban location in QLD were more closely related to L. sericata and represented the subspecies L. c. cuprina, whereas the flies collected from sheep farms in NSW, VIC and WA represented the subspecies L. c. dorsalis. CONCLUSIONS: Phylogenetic analyses of the mt genomes representing Lucilia from the five geographic locations in Australia supported the previously demonstrated paraphyly of L. cuprina with respect to L. sericata and revealed that L. c. cuprina is distinct from L. c. dorsalis and that L. c. cuprina is more closely related to L. sericata than L. c. dorsalis. The mt genomes reported here provide an important molecular resource to develop tools for species- and subspecies-level identification of Lucilia from different geographical regions across Australia.


Assuntos
Dípteros , Miíase , Animais , Ovinos , Calliphoridae , Filogenia , Dípteros/genética , Miíase/epidemiologia , Miíase/veterinária , Genótipo , Vitória , Nucleotídeos , Genômica
18.
Comput Struct Biotechnol J ; 21: 2696-2704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143762

RESUMO

Major advances in genomic and associated technologies have demanded reliable bioinformatic tools and workflows for the annotation of genes and their products via comparative analyses using well-curated reference data sets, accessible in public repositories. However, the accurate in silico annotation of molecules (proteins) encoded in organisms (e.g., multicellular parasites) which are evolutionarily distant from those for which these extensive reference data sets are available, including invertebrate model organisms (e.g., Caenorhabditis elegans - free-living nematode, and Drosophila melanogaster - the vinegar fly) and vertebrate species (e.g., Homo sapiens and Mus musculus), remains a major challenge. Here, we constructed an informatic workflow for the enhanced annotation of biologically-important, excretory/secretory (ES) proteins ("secretome") encoded in the genome of a parasitic roundworm, called Haemonchus contortus (commonly known as the barber's pole worm). We critically evaluated the performance of five distinct methods, refined some of them, and then combined the use of all five methods to comprehensively annotate ES proteins, according to gene ontology, biological pathways and/or metabolic (enzymatic) processes. Then, using optimised parameter settings, we applied this workflow to comprehensively annotate 2591 of all 3353 proteins (77.3%) in the secretome of H. contortus. This result is a substantial improvement (10-25%) over previous annotations using individual, "off-the-shelf" algorithms and default settings, indicating the ready applicability of the present, refined workflow to gene/protein sequence data sets from a wide range of organisms in the Tree-of-Life.

19.
Res Sq ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993607

RESUMO

Purpose: Progranulin (PGRN) is a secreted glycoprotein growth factor with roles in wound healing, inflammation, angiogenesis and malignancy. An orthologue of the gene encoding human PGRN was identified in the carcinogenic liver fluke Opisthorchis viverrini. Methods: Sequence structure, general characteristics and possible function of O. viverrini PGRN was analyzed using bioinformatics. Expression profiles were investigated with quantitative RT-PCR, western blot and immunolocalization. A specific peptide of Ov-PGRN was used to investigate a role for this molecule in pathogenesis. Results: The structure of the gene coding for O. viverrini PGRN was 36,463 bp in length, and comprised of 13 exons, 12 introns, and a promoter sequence. The Ov-pgrn mRNA is 2,768 bp in length and encodes an 846 amino acids with a predicted molecular mass of 91.61 kDa. Ov-PGRN exhibited one half and seven complete granulin domains. Phylogenetic analysis revealed that Ov-PGRN formed its closest relationship with PGRN of liver flukes in the Opisthorchiidae. Transcripts of Ov-pgrn were detected in several developmental stages, with highest expression in the metacercaria, indicating that Ov-PGRN may participate as a growth factor in the early development of O. viverrini. Western blot analysis revealed the presence of detected Ov-PGRN in both soluble somatic or excretory/secretory products, and immunolocalization indicated high levels of expression in the tegument and parenchyma of the adult fluke. Co-culture of a human cholangiocyte cell line and a peptide fragment of Ov-PGRN stimulated proliferation of cholangiocytes and upregulation of expression of the cytokines IL6 and IL8. Conclusion: Ov-PGRN is expressed throughout the life cycle of liver fluke, and likely plays a key role in development and growth.

20.
Mol Ecol Resour ; 23(4): 833-843, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36727564

RESUMO

Clonorchis sinensis is a carcinogenic liver fluke that causes clonorchiasis-a neglected tropical disease (NTD) affecting ~35 million people worldwide. No vaccine is available, and chemotherapy relies on one anthelmintic, praziquantel. This parasite has a complex life history and is known to infect a range of species of intermediate (freshwater snails and fish) and definitive (piscivorous) hosts. Despite this biological complexity and the impact of this biocarcinogenic pathogen, there has been no previous study of molecular variation in this parasite on a genome-wide scale. Here, we conducted the first extensive nuclear genomic exploration of C. sinensis individuals (n = 152) representing five distinct populations from mainland China, and one from Far East Russia, and revealed marked genetic variation within this species between "northern" and "southern" geographical regions. The discovery of this variation indicates the existence of biologically distinct variants within C. sinensis, which may have distinct epidemiology, pathogenicity and/or chemotherapic responsiveness. The detection of high heterozygosity within C. sinensis specimens suggests that this parasite has developed mechanisms to readily adapt to changing environments and/or host species during its life history/evolution. From an applied perspective, the identification of invariable genes could assist in finding new intervention targets in this parasite, given the major clinical relevance of clonorchiasis. From a technical perspective, the genomic-informatic workflow established herein will be readily applicable to a wide range of other parasites that cause NTDs.


Assuntos
Clonorquíase , Clonorchis sinensis , Animais , Clonorchis sinensis/genética , Clonorquíase/diagnóstico , Clonorquíase/epidemiologia , Clonorquíase/parasitologia , Variação Genética , Ásia Oriental , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA