Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Autoimmun ; 147: 103260, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38797046

RESUMO

OBJECTIVE: In polymyalgia rheumatica (PMR), glucocorticoids (GCs) relieve pain and stiffness, but fatigue may persist. We aimed to explore the effect of disease, GCs and PMR symptoms in the metabolite signatures of peripheral blood from patients with PMR or the related disease, giant cell arteritis (GCA). METHODS: Nuclear magnetic resonance spectroscopy was performed on serum from 40 patients with untreated PMR, 84 with new-onset confirmed GCA, and 53 with suspected GCA who later were clinically confirmed non-GCA, and 39 age-matched controls. Further samples from PMR patients were taken one and six months into glucocorticoid therapy to explore relationship of metabolites to persistent fatigue. 100 metabolites were identified using Chenomx and statistical analysis performed in SIMCA-P to examine the relationship between metabolic profiles and, disease, GC treatment or symptoms. RESULTS: The metabolite signature of patients with PMR and GCA differed from that of age-matched non-inflammatory controls (R2 > 0.7). There was a smaller separation between patients with clinically confirmed GCA and those with suspected GCA who later were clinically confirmed non-GCA (R2 = 0.135). In PMR, metabolite signatures were further altered with glucocorticoid treatment (R2 = 0.42) but did not return to that seen in controls. Metabolites correlated with CRP, pain, stiffness, and fatigue (R2 ≥ 0.39). CRP, pain, and stiffness declined with treatment and were associated with 3-hydroxybutyrate and acetoacetate, but fatigue did not. Metabolites differentiated patients with high and low fatigue both before and after treatment (R2 > 0.9). Low serum glutamine was predictive of high fatigue at both time points (0.79-fold change). CONCLUSION: PMR and GCA alter the metabolite signature. In PMR, this is further altered by glucocorticoid therapy. Treatment-induced metabolite changes were linked to measures of inflammation (CRP, pain and stiffness), but not to fatigue. Furthermore, metabolite signatures distinguished patients with high or low fatigue.

2.
Sci Transl Med ; 15(706): eabn4722, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494472

RESUMO

Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Inflamação , Fenótipo , Redes e Vias Metabólicas
3.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328687

RESUMO

Changes in cellular metabolism have been implicated in mediating the activated fibroblast phenotype in a number of chronic inflammatory disorders, including pulmonary fibrosis, renal disease and rheumatoid arthritis. The aim of this study was therefore to characterise the metabolic profile of synovial joint fluid and synovial fibroblasts under both basal and inflammatory conditions in a cohort of obese and normal-weight hip OA patients. Furthermore, we sought to ascertain whether modulation of a metabolic pathway in OA synovial fibroblasts could alter their inflammatory activity. Synovium and synovial fluid was obtained from hip OA patients, who were either of normal-weight or obese and were undergoing elective joint replacement surgery. The synovial fluid metabolome was determined by 1H NMR spectroscopy. The metabolic profile of isolated synovial fibroblasts in vitro was characterised by lactate secretion, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using the Seahorse XF Analyser. The effects of a small molecule pharmacological inhibitor and siRNA targeted at glutaminase-1 (GLS1) were assessed to probe the role of glutamine metabolism in OA synovial fibroblast function. Obese OA patient synovial fluid (n = 5) exhibited a different metabotype, compared to normal-weight patient fluid (n = 6), with significantly increased levels of 1, 3-dimethylurate, N-Nitrosodimethylamine, succinate, tyrosine, pyruvate, glucose, glycine and lactate, and enrichment of the glutamine-glutamate metabolic pathway, which correlated with increasing adiposity. In vitro, isolated obese OA fibroblasts exhibited greater basal lactate secretion and aerobic glycolysis, and increased mitochondrial respiration when stimulated with pro-inflammatory cytokine TNFα, compared to fibroblasts from normal-weight patients. Inhibition of GLS1 attenuated the TNFα-induced expression and secretion of IL-6 in OA synovial fibroblasts. These findings suggest that altered cellular metabolism underpins the inflammatory phenotype of OA fibroblasts, and that targeted inhibition of glutamine-glutamate metabolism may provide a route to reducing the pathological effects of joint inflammation in OA patients who are obese.


Assuntos
Osteoartrite do Quadril , Células Cultivadas , Fibroblastos/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/metabolismo , Obesidade/metabolismo , Osteoartrite do Quadril/patologia , Líquido Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Front Immunol ; 12: 676105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650548

RESUMO

Background: Systemic inflammation in rheumatoid arthritis (RA) is associated with metabolic changes. We used nuclear magnetic resonance (NMR) spectroscopy-based metabolomics to assess the relationship between an objective measure of systemic inflammation [C-reactive protein (CRP)] and both the serum and urinary metabolome in patients with newly presenting RA. Methods: Serum (n=126) and urine (n=83) samples were collected at initial presentation from disease modifying anti-rheumatic drug naïve RA patients for metabolomic profile assessment using 1-dimensional 1H-NMR spectroscopy. Metabolomics data were analysed using partial least square regression (PLS-R) and orthogonal projections to latent structure discriminant analysis (OPLS-DA) with cross validation. Results: Using PLS-R analysis, a relationship between the level of inflammation, as assessed by CRP, and the serum (p=0.001) and urinary (p<0.001) metabolome was detectable. Likewise, following categorisation of CRP into tertiles, patients in the lowest CRP tertile and the highest CRP tertile were statistically discriminated using OPLS-DA analysis of both serum (p=0.033) and urinary (p<0.001) metabolome. The most highly weighted metabolites for these models included glucose, amino acids, lactate, and citrate. These findings suggest increased glycolysis, perturbation in the citrate cycle, oxidative stress, protein catabolism and increased urea cycle activity are key characteristics of newly presenting RA patients with elevated CRP. Conclusions: This study consolidates our understanding of a previously identified relationship between serum metabolite profile and inflammation and provides novel evidence that there is a relationship between urinary metabolite profile and inflammation as measured by CRP. Identification of these metabolic perturbations provides insights into the pathogenesis of RA and may help in the identification of therapeutic targets.


Assuntos
Artrite Reumatoide/sangue , Artrite Reumatoide/urina , Adulto , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Proteína C-Reativa/análise , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/urina , Análise dos Mínimos Quadrados , Masculino , Metaboloma , Metabolômica , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética
5.
J Pers Med ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34575614

RESUMO

There is no consensus for diagnosis or treatment of RA muscle loss. We aimed to investigate metabolites in arthritic mice urine as biomarkers of muscle loss. DBA1/J mice comprised collagen-induced arthritis (CIA) and control (CO) groups. Urine samples were collected at 0, 18, 35, 45, 55, and 65 days of disease and subjected to nuclear magnetic resonance spectroscopy. Metabolites were identified using Chenomx and Birmingham Metabolite libraries. The statistical model used principal component analysis, partial least-squares discriminant analysis, and partial least-squares regression analysis. Linear regression and Fisher's exact test via the MetaboAnalyst website were performed (VIP-score). Nearly 100 identified metabolites had CIA vs. CO and disease time-dependent differences (p < 0.05). Twenty-eight metabolites were muscle-associated: carnosine (VIPs 2.8 × 102) and succinyl acetone (VIPs 1.0 × 10) showed high importance in CIA vs. CO models at day 65; CIA pair analysis showed histidine (VIPs 1.2 × 102) days 55 vs. 65, histamine (VIPs 1.1 × 102) days 55 vs. 65, and L-methionine (VIPs 1.1 × 102) days 0 vs. 18. Carnosine was fatigue- (0.039) related, creatine was food intake- (-0.177) and body weight- (-0.039) related, and both metabolites were clinical score- (0.093; 0.050) and paw edema- (0.125; 0.026) related. Therefore, muscle metabolic alterations were detected in arthritic mice urine, enabling further validation in RA patient's urine, targeting prognosis, diagnosis, and monitoring of RA-mediated muscle loss.

6.
Front Immunol ; 12: 725641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512657

RESUMO

Fibroblast-like synoviocytes (FLS) play an important role in maintaining joint homeostasis and orchestrating local inflammatory processes. When activated during injury or inflammation, FLS undergo transiently increased bioenergetic and biosynthetic demand. We aimed to identify metabolic changes which occur early in inflammatory disease pathogenesis which might support sustained cellular activation in persistent inflammation. We took primary human FLS from synovial biopsies of patients with very early rheumatoid arthritis (veRA) or resolving synovitis, and compared them with uninflamed control samples from the synovium of people without arthritis. Metabotypes were compared using NMR spectroscopy-based metabolomics and correlated with serum C-reactive protein levels. We measured glycolysis and oxidative phosphorylation by Seahorse analysis and assessed mitochondrial morphology by immunofluorescence. We demonstrate differences in FLS metabolism measurable after ex vivo culture, suggesting that disease-associated metabolic changes are long-lasting. We term this phenomenon 'metabolic memory'. We identify changes in cell metabolism after acute TNFα stimulation across disease groups. When compared to FLS from patients with early rheumatoid arthritis, FLS from patients with resolving synovitis have significantly elevated mitochondrial respiratory capacity in the resting state, and less fragmented mitochondrial morphology after TNFα treatment. Our findings indicate the potential to restore cell metabotypes by modulating mitochondrial function at sites of inflammation, with implications for treatment of RA and related inflammatory conditions in which fibroblasts play a role.


Assuntos
Artrite Reumatoide/imunologia , Fibroblastos/imunologia , Inflamação/imunologia , Sinoviócitos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação Oxidativa , Análise de Regressão , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Necrose Tumoral alfa/genética
7.
Metabolites ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35050151

RESUMO

Recent advances in emergency medicine and the co-ordinated delivery of trauma care mean more critically-injured patients now reach the hospital alive and survive life-saving operations. Indeed, between 2008 and 2017, the odds of surviving a major traumatic injury in the UK increased by nineteen percent. However, the improved survival rates of severely-injured patients have placed an increased burden on the healthcare system, with major trauma a common cause of intensive care unit (ICU) admissions that last ≥10 days. Improved understanding of the factors influencing patient outcomes is now urgently needed. We investigated the serum metabolomic profile of fifty-five major trauma patients across three post-injury phases: acute (days 0-4), intermediate (days 5-14) and late (days 15-112). Using ICU length of stay (LOS) as a clinical outcome, we aimed to determine whether the serum metabolome measured at days 0-4 post-injury for patients with an extended (≥10 days) ICU LOS differed from that of patients with a short (<10 days) ICU LOS. In addition, we investigated whether combining metabolomic profiles with clinical scoring systems would generate a variable that would identify patients with an extended ICU LOS with a greater degree of accuracy than models built on either variable alone. The number of metabolites unique to and shared across each time segment varied across acute, intermediate and late segments. A one-way ANOVA revealed the most variation in metabolite levels across the different time-points was for the metabolites lactate, glucose, anserine and 3-hydroxybutyrate. A total of eleven features were selected to differentiate between <10 days ICU LOS vs. >10 days ICU LOS. New Injury Severity Score (NISS), testosterone, and the metabolites cadaverine, urea, isoleucine, acetoacetate, dimethyl sulfone, syringate, creatinine, xylitol, and acetone form the integrated biomarker set. Using metabolic enrichment analysis, we found valine, leucine and isoleucine biosynthesis, glutathione metabolism, and glycine, serine and threonine metabolism were the top three pathways differentiating ICU LOS with a p < 0.05. A combined model of NISS and testosterone and all nine selected metabolites achieved an AUROC of 0.824. Differences exist in the serum metabolome of major trauma patients who subsequently experience a short or prolonged ICU LOS in the acute post-injury setting. Combining metabolomic data with anatomical scoring systems allowed us to discriminate between these two groups with a greater degree of accuracy than that of either variable alone.

8.
FEBS J ; 288(19): 5555-5568, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33251764

RESUMO

Mesenchymal stromal fibroblasts have emerged as key mediators of the inflammatory response and drivers of localised inflammation, in part through their interactions with resident and circulating immune cells at inflammatory sites. As such, they have been implicated in a number of chronic inflammatory conditions as well as in tumour progression through modifying the microenvironment. The connection between metabolic changes and altered phenotype of fibroblasts in inflammatory microenvironments has clear implications for our understanding of how chronic inflammation is regulated and for the development of new anti-inflammatory therapeutics. In this review, we consider the evidence that changes to fibroblast metabolic state underpin chronic inflammation. We examine recent research on fibroblast metabolism in inflammatory microenvironments and consider their involvement in inflammation, providing insight into the role of fibroblasts and metabolism in mediating inflammatory disease progression namely cancer, arthritis and fibrotic disorders including chronic kidney disease, pulmonary fibrosis, heart disease and liver disease.


Assuntos
Fibroblastos/metabolismo , Inflamação/genética , Células-Tronco Mesenquimais/metabolismo , Doenças Metabólicas/genética , Microambiente Celular/genética , Fibroblastos/patologia , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Células-Tronco Mesenquimais/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
10.
Arthritis Rheumatol ; 70(7): 984-999, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29579371

RESUMO

Metabolomic studies of body fluids show that immune-mediated inflammatory diseases such as rheumatoid arthritis (RA) are associated with metabolic disruption. This is likely to reflect the increased bioenergetic and biosynthetic demands of sustained inflammation and changes in nutrient and oxygen availability in damaged tissue. The synovial membrane lining layer is the principal site of inflammation in RA. Here, the resident cells are fibroblast-like synoviocytes (FLS) and synovial tissue macrophages, which are transformed toward overproduction of enzymes that degrade cartilage and bone and cytokines that promote immune cell infiltration. Recent studies have shown metabolic changes in both FLS and macrophages from RA patients, and these may be therapeutically targetable. However, because the origins and subset-specific functions of synoviocytes are poorly understood, and the signaling modules that control metabolic deviation in RA synovial cells are yet to be explored, significant additional research is needed to translate these findings to clinical application. Furthermore, in many inflamed tissues, different cell types can forge metabolic collaborations through solute carriers in their membranes to meet a high demand for energy or biomolecules. Such relationships are likely to exist in the synovium and have not been studied. Finally, it is not yet known whether metabolic change is a consequence of disease or whether primary changes to cellular metabolism might underlie or contribute to the pathogenesis of early-stage disease. In this review article, we collate what is known about metabolism in synovial tissue cells and highlight future directions of research in this area.


Assuntos
Artrite Reumatoide/imunologia , Inflamação/metabolismo , Metaboloma/imunologia , Sinoviócitos/metabolismo , Cartilagem/metabolismo , Doença Crônica , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Macrófagos/metabolismo , Membrana Sinovial/metabolismo
11.
Sci Rep ; 6: 38074, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905491

RESUMO

Current biomarkers of renal disease in systemic vasculitis lack predictive value and are insensitive to early damage. To identify novel biomarkers of renal vasculitis flare, we analysed the longitudinal urinary metabolomic profile of a rat model of anti-neutrophil cytoplasmic antibody (ANCA) vasculitis. Wistar-Kyoto (WKY) rats were immunised with human myeloperoxidase (MPO). Urine was obtained at regular intervals for 181 days, after which relapse was induced by re-challenge with MPO. Urinary metabolites were assessed in an unbiased fashion using nuclear magnetic resonance (NMR) spectroscopy, and analysed using partial least squares discriminant analysis (PLS-DA) and partial least squares regression (PLS-R). At 56 days post-immunisation, we found that rats with vasculitis had a significantly different urinary metabolite profile than control animals; the observed PLS-DA clusters dissipated between 56 and 181 days, and re-emerged with relapse. The metabolites most altered in rats with active or relapsing vasculitis were trimethylamine N-oxide (TMAO), citrate and 2-oxoglutarate. Myo-inositol was also moderately predictive. The key urine metabolites identified in rats were confirmed in a large cohort of patients using liquid chromatography-mass spectrometry (LC-MS). Hypocitraturia and elevated urinary myo-inositol remained associated with active disease, with the urine myo-inositol:citrate ratio being tightly correlated with active renal vasculitis.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/urina , Nefropatias/urina , Metabolômica/métodos , Peroxidase/administração & dosagem , Animais , Ácido Cítrico/urina , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Ácidos Cetoglutáricos/urina , Análise dos Mínimos Quadrados , Masculino , Metilaminas/urina , Peroxidase/imunologia , Ratos , Ratos Endogâmicos WKY , Recidiva
12.
PLoS Negl Trop Dis ; 10(4): e0004604, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27057743

RESUMO

BACKGROUND: Nontyphoidal strains of Salmonella are a leading cause of death among HIV-infected Africans. Antibody-induced complement-mediated killing protects healthy Africans against Salmonella, but increased levels of anti-lipopolysaccharide (LPS) antibodies in some HIV-infected African adults block this killing. The objective was to understand how these high levels of anti-LPS antibodies interfere with the killing of Salmonella. METHODOLOGY/PRINCIPAL FINDINGS: Sera and affinity-purified antibodies from African HIV-infected adults that failed to kill invasive S. Typhimurium D23580 were compared to sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. The failure of sera from certain HIV-infected subjects to kill Salmonella was found to be due to an inherent inhibitory effect of anti-LPS antibodies. This inhibition was concentration-dependent and strongly associated with IgA and IgG2 anti-LPS antibodies (p<0.0001 for both). IgG anti-LPS antibodies, from sera of HIV-infected individuals that inhibit killing at high concentration, induced killing when diluted. Conversely, IgG, from sera of HIV-uninfected adults that induce killing, inhibited killing when concentrated. IgM anti-LPS antibodies from all subjects also induced Salmonella killing. Finally, the inhibitory effect of high concentrations of anti-LPS antibodies is seen with IgM as well as IgG and IgA. No correlation was found between affinity or avidity, or complement deposition or consumption, and inhibition of killing. CONCLUSION/SIGNIFICANCE: IgG and IgM classes of anti-S. Typhimurium LPS antibodies from HIV-infected and HIV-uninfected individuals are bactericidal, while at very high concentrations, anti-LPS antibodies of all classes inhibit in vitro killing of Salmonella. This could be due to a variety of mechanisms relating to the poor ability of IgA and IgG2 to activate complement, and deposition of complement at sites where it cannot insert in the bacterial membrane. Vaccine trials are required to understand the significance of lack of in vitro killing by anti-LPS antibodies from a minority of HIV-infected individuals with impaired immune homeostasis.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por HIV/imunologia , Infecções por Salmonella/imunologia , Salmonella/imunologia , África , Hospedeiro Imunocomprometido , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Lipopolissacarídeos/imunologia , Ensaios de Anticorpos Bactericidas Séricos , Teste Bactericida do Soro
14.
Curr Rheumatol Rep ; 17(9): 57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26210510

RESUMO

While the most obvious manifestations of rheumatoid arthritis (RA) involve inflammation and damage in the synovial joints, the systemic effects of the condition are widespread and life-threatening. Of particular interest is the 'lipid paradox' of RA, where patients with a numerically equivocal starting lipid profile have a significantly raised risk of cardiovascular (CV) events and response to therapy results in a 'normalization' of lipid levels and reduction in events. Changes in lipids can be seen before overt disease manifestations which suggest that they are closely linked to the more widespread inflammation-driven metabolic changes associated with tumour necrosis factor (TNF). Cachexia involves a shift in body mass from muscle to fat, which may or may not directly increase the cardiovascular risk. However, since TNF inhibition is associated with reduction in cardiovascular events, it does suggest that these widespread metabolic changes involving lipids are of importance. Analysis of single lipids or metabolites have been used to identify some of the key changes, but more recently, metabolomic and lipidomic approaches have been applied to identify a broad spectrum of small molecule changes and identify potentially altered metabolic pathways. Further work is needed to understand fully the metabolic changes in lipid profiles and identify novel ways of targeting desired profile changes, but work so far does suggest that a better understanding may allow management of patients to downregulate the systemic effects of their disease that puts them at risk of cardiovascular complications.


Assuntos
Artrite Reumatoide/metabolismo , Metabolismo dos Lipídeos/fisiologia , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Metabolômica
15.
J Immunol ; 194(5): 2148-59, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25632005

RESUMO

Manipulation of the CD28/CTLA-4 pathway is at the heart of a number of immunomodulatory approaches used in both autoimmunity and cancer. Although it is clear that CTLA-4 is a critical regulator of T cell responses, the immunological contexts in which CTLA-4 controls immune responses are not well defined. In this study, we show that whereas CD80/CD86-dependent activation of resting human T cells caused extensive T cell proliferation and robust CTLA-4 expression, in this context CTLA-4 blocking Abs had no impact on the response. In contrast, in settings where CTLA-4(+) cells were present as "regulators," inhibition of resting T cell responses was dependent on CTLA-4 expression and specifically related to the number of APC. At low numbers of APC or low levels of ligand, CTLA-4-dependent suppression was highly effective whereas at higher APC numbers or high levels of ligand, inhibition was lost. Accordingly, the degree of suppression correlated with the level of CD86 expression remaining on the APC. These data reveal clear rules for the inhibitory function of CTLA-4 on regulatory T cells, which are predicted by its ability to remove ligands from APC.


Assuntos
Anticorpos/farmacologia , Células Dendríticas/imunologia , Modelos Imunológicos , Linfócitos T Reguladores/imunologia , Animais , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Células CHO , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Contagem de Células , Proliferação de Células , Cricetulus , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Endocitose , Regulação da Expressão Gênica , Humanos , Ativação Linfocitária/efeitos dos fármacos , Cultura Primária de Células , Transdução de Sinais , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Transgenes
16.
Best Pract Res Clin Rheumatol ; 29(6): 770-82, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-27107512

RESUMO

There is an overwhelming need for a simple, reliable tool that aids clinicians in diagnosing, assessing disease activity and treating rheumatic conditions. Identification of biomarkers in partially understood inflammatory disorders has long been sought after as the Holy Grail of Rheumatology. Given the complex nature of inflammatory conditions, it has been difficult to earmark the potential biomarkers. Metabolomics, however, is promising in providing new insights into inflammatory conditions and also identifying such biomarkers. Metabolomic studies have generally revealed increased energy requirements for by-products of a hypoxic environment, leading to a characteristic metabolic fingerprint. Here, we discuss the significance of such studies and their potential as a biomarker.


Assuntos
Inflamação/patologia , Metabolômica , Doenças Reumáticas/patologia , Biomarcadores/metabolismo , Humanos , Reumatologia
17.
Ann Rheum Dis ; 74(8): 1588-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24665115

RESUMO

OBJECTIVES: A genetic variant of the leukocyte phosphatase PTPN22 (R620W) is strongly associated with autoimmune diseases including rheumatoid arthritis (RA). Functional studies on the variant have focussed on lymphocytes, but it is most highly expressed in neutrophils. We have investigated the effects of the variant on neutrophil function in health and in patients with RA. METHODS: Healthy individuals and patients with RA were genotyped for PTPN22 (R620W) and neutrophils isolated from peripheral blood. Neutrophil adhesion and migration across inflamed endothelium were measured. Calcium (Ca(2+)) release and reactive oxygen species (ROS) production in response to fMLP stimulation were also assessed. RESULTS: Expression of R620W enhanced neutrophil migration through cytokine activated endothelium (non-R620W=24%, R620W=45% migrating cells, p<0.001). Following fMLP stimulation, neutrophils that were heterozygous and homozygous for R620W released significantly more Ca(2+) when compared to non-R620W neutrophils, in healthy individuals and patients with RA. fMLP stimulation, after TNF-α priming, provoked more ROS from neutrophils heterozygous for R620W in patients with RA (non-R620W vs R620W=∼1.75-fold increase) and healthy individuals (non-R620W vs R620W=fourfold increase) and this increase was statistically significant in healthy individuals (p<0.001) but not in patients with RA (p<0.25). CONCLUSIONS: Expression of PTPN22 (R620W) enhanced neutrophil effector functions in health and RA, with migration, Ca(2+) release and production of ROS increased. Neutrophils are found in large numbers in the RA joint, and this hyperactivity of R620W cells may directly contribute to the joint damage, as well as to the initiation and perpetuation of the chronic immune-mediated inflammatory processes driving the disease.


Assuntos
Artrite Reumatoide/genética , Neutrófilos/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Adulto , Artrite Reumatoide/imunologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Tirosina Fosfatase não Receptora Tipo 22/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Adulto Jovem
18.
BMC Bioinformatics ; 15: 396, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25490956

RESUMO

BACKGROUND: Metabolomics is a systems approach to the analysis of cellular processes through small-molecule metabolite profiling. Standardisation of sample handling and acquisition approaches has contributed to reproducibility. However, the development of robust methods for the analysis of metabolomic data is a work-in-progress. The tools that do exist are often not well integrated, requiring manual data handling and custom scripting on a case-by-case basis. Furthermore, existing tools often require experience with programming environments such as MATLAB® or R to use, limiting accessibility. Here we present Pathomx, a workflow-based tool for the processing, analysis and visualisation of metabolomic and associated data in an intuitive and extensible environment. RESULTS: The core application provides a workflow editor, IPython kernel and a HumanCyc™-derived database of metabolites, proteins and genes. Toolkits provide reusable tools that may be linked together to create complex workflows. Pathomx is released with a base set of plugins for the import, processing and visualisation of data. The IPython backend provides integration with existing platforms including MATLAB® and R, allowing data to be seamlessly transferred. Pathomx is supplied with a series of demonstration workflows and datasets. To demonstrate the use of the software we here present an analysis of 1D and 2D (1)H NMR metabolomic data from a model system of mammalian cell growth under hypoxic conditions. CONCLUSIONS: Pathomx is a useful addition to the analysis toolbox. The intuitive interface lowers the barrier to entry for non-experts, while scriptable tools and integration with existing tools supports complex analysis. We welcome contributions from the community.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Macrófagos/metabolismo , Metabolômica/métodos , Software , Fluxo de Trabalho , Células Cultivadas , Humanos , Macrófagos/citologia , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Reprodutibilidade dos Testes
19.
Arthritis Res Ther ; 15(5): R108, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24016860

RESUMO

INTRODUCTION: Monocytic cells play a central role in the aetiology of rheumatoid arthritis, and manipulation of the activation of these cells is an approach currently under investigation to discover new therapies for this and associated diseases. CD148 is a transmembrane tyrosine phosphatase that is highly expressed in monocytes and macrophages and, since this family of molecules plays an important role in the regulation of cell activity, CD148 is a potential target for the manipulation of macrophage activation. For any molecule to be considered a therapeutic target, it is important for it to be increased in activity or expression during disease. METHODS: We have investigated the expression of CD148 in two murine models of arthritis and in joints from rheumatoid arthritis (RA) patients using real-time PCR, immunohistochemistry, and studied the effects of proinflammatory stimuli on CD148 activity using biochemical assays. RESULTS: We report that CD148 mRNA is upregulated in diseased joints of mice with collagen-induced arthritis. Furthermore, we report that in mice CD148 protein is highly expressed in infiltrating monocytes of diseased joints, with a small fraction of T cells also expressing CD148. In human arthritic joints both T cells and monocytes expressed high levels of CD148, however, we show differential expression of CD148 in T cells and monocytes from normal human peripheral blood compared to peripheral blood from RA and both normal and RA synovial fluid. Finally, we show that synovial fluid from rheumatoid arthritis patients suppresses CD148 phosphatase activity. CONCLUSIONS: CD148 is upregulated in macrophages and T cells in human RA samples, and its activity is enhanced by treatment with tumour necrosis factor alpha (TNFα), and reduced by synovial fluid or oxidising conditions. A greater understanding of the role of CD148 in chronic inflammation may lead to alternative therapeutic approaches to these diseases.


Assuntos
Artrite Experimental/genética , Artrite Reumatoide/genética , Perfilação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Peróxido de Hidrogênio/farmacologia , Imuno-Histoquímica , Articulações/metabolismo , Articulações/patologia , Leucócitos Mononucleares/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Microscopia Confocal , Monócitos/metabolismo , Monócitos/patologia , Oxidantes/farmacologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Líquido Sinovial/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima
20.
Arthritis Rheum ; 65(8): 2015-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740368

RESUMO

OBJECTIVE: Inflammatory arthritis is associated with systemic manifestations including alterations in metabolism. We used nuclear magnetic resonance (NMR) spectroscopy-based metabolomics to assess metabolic fingerprints in serum from patients with established rheumatoid arthritis (RA) and those with early arthritis. METHODS: Serum samples were collected from newly presenting patients with established RA who were naive for disease-modifying antirheumatic drugs, matched healthy controls, and 2 groups of patients with synovitis of ≤3 months' duration whose outcomes were determined at clinical followup. Serum metabolomic profiles were assessed using 1-dimensional (1) H-NMR spectroscopy. Discriminating metabolites were identified, and the relationships between metabolomic profiles and clinical variables including outcomes were examined. RESULTS: The serum metabolic fingerprint in established RA was clearly distinct from that of healthy controls. In early arthritis, we were able to stratify the patients according to the level of current inflammation, with C-reactive protein correlating with metabolic differences in 2 separate groups (P < 0.001). Lactate and lipids were important discriminators of inflammatory burden in both early arthritis patient groups. The sensitivities and specificities of models to predict the development of either RA or persistent arthritis in patients with early arthritis were low. CONCLUSION: The metabolic fingerprint reflects inflammatory disease activity in patients with synovitis, demonstrating that underlying inflammatory processes drive significant changes in metabolism that can be measured in the peripheral blood. The identification of metabolic alterations may provide insights into disease mechanisms operating in patients with inflammatory arthritis.


Assuntos
Artrite Reumatoide/sangue , Biomarcadores/sangue , Metabolômica/métodos , Sinovite/sangue , Adulto , Idoso , Artrite Reumatoide/diagnóstico , Proteína C-Reativa/análise , Diagnóstico Precoce , Feminino , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Ressonância Magnética Nuclear Biomolecular , Sinovite/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA