Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Genom ; 4(5): 100544, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38692281

RESUMO

Chronic inflammation is a hallmark of age-related disease states. The effectiveness of inflammatory proteins including C-reactive protein (CRP) in assessing long-term inflammation is hindered by their phasic nature. DNA methylation (DNAm) signatures of CRP may act as more reliable markers of chronic inflammation. We show that inter-individual differences in DNAm capture 50% of the variance in circulating CRP (N = 17,936, Generation Scotland). We develop a series of DNAm predictors of CRP using state-of-the-art algorithms. An elastic-net-regression-based predictor outperformed competing methods and explained 18% of phenotypic variance in the Lothian Birth Cohort of 1936 (LBC1936) cohort, doubling that of existing DNAm predictors. DNAm predictors performed comparably in four additional test cohorts (Avon Longitudinal Study of Parents and Children, Health for Life in Singapore, Southall and Brent Revisited, and LBC1921), including for individuals of diverse genetic ancestry and different age groups. The best-performing predictor surpassed assay-measured CRP and a genetic score in its associations with 26 health outcomes. Our findings forge new avenues for assessing chronic low-grade inflammation in diverse populations.


Assuntos
Proteína C-Reativa , Metilação de DNA , Epigenoma , Inflamação , Humanos , Inflamação/genética , Inflamação/sangue , Masculino , Proteína C-Reativa/análise , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Feminino , Pessoa de Meia-Idade , Adulto , Estudos de Coortes , Idoso , Doença Crônica
2.
Genes (Basel) ; 14(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136945

RESUMO

Mercury has high industrial utility and is present in many products, and environmental contamination and occupational exposure are widespread. There are numerous biological systems involved in the absorption, metabolism, and excretion of Hg, and it is possible that some systems may be impacted by genetic variation. If so, genotype may affect tissue concentrations of Hg and subsequent toxic effects. Genome-wide association testing was performed on blood Hg samples from pregnant women of the Avon Longitudinal Study of Parents and Children (n = 2893) and children of the Human Early Life Exposome (n = 1042). Directly-genotyped single-nucleotide polymorphisms (SNPs) were imputed to the Haplotype Reference Consortium r1.1 panel of whole genotypes and modelled againstlog-transformed Hg. Heritability was estimated using linkage disequilibrium score regression. The heritability of Hg was estimated as 24.0% (95% CI: 16.9% to 46.4%) in pregnant women, but could not be determined in children. There were 16 SNPs associated with Hg in pregnant women above a suggestive p-value threshold (p < 1 × 10-5), and 21 for children. However, no SNP passed this threshold in both studies, and none were genome-wide significant (p < 5 × 10-8). SNP-Hg associations were highly discordant between women and children, and this may reflect differences in metabolism, a gene-age interaction, or dose-response effects. Several suggestive variants had plausible links to Hg metabolism, such as rs146099921 in metal transporter SLC39A14, and two variants (rs28618224, rs7154700) in potassium voltage-gated channel genes. The findings would benefit from external validation, as suggestive results may contain both true associations and false positives.


Assuntos
Estudo de Associação Genômica Ampla , Mercúrio , Gravidez , Criança , Humanos , Feminino , Gestantes , Estudos Longitudinais , Genótipo
3.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697338

RESUMO

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Assuntos
Asma , Metilação de DNA , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Carcinogênese , Inflamação , Estações do Ano
4.
Neuroendocrinology ; 113(9): 915-923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907174

RESUMO

INTRODUCTION: Small intestinal neuroendocrine tumours (siNETs) are rare neoplasms which present with low mutational burden and can be subtyped based on copy number variation (CNV). Currently, siNETs can be molecularly classified as having chromosome 18 loss of heterozygosity (18LOH), multiple CNVs (MultiCNV), or no CNVs. 18LOH tumours have better progression-free survival when compared to MultiCNV and NoCNV tumours, however, the mechanism underlying this is unknown, and clinical practice does not currently consider CNV status. METHODS: Here, we use genome-wide tumour DNA methylation (n = 54) and gene expression (n = 20 matched to DNA methylation) to better understand how gene regulation varies by 18LOH status. We then use multiple cell deconvolution methods to analyse how cell composition varies between 18LOH status and determine potential associations with progression-free survival. RESULTS: We identified 27,464 differentially methylated CpG sites and 12 differentially expressed genes between 18LOH and non-18LOH (MultiCNV + NoCNV) siNETs. Although few differentially expressed genes were identified, these genes were highly enriched with the differentially methylated CpG sites compared to the rest of the genome. We identified differences in tumour microenvironment between 18LOH and non-18LOH tumours, including CD14+ infiltration in a subset of non-18LOH tumours which had the poorest clinical outcomes. CONCLUSIONS: We identify a small number of genes which appear to be linked to the 18LOH status of siNETs, and find evidence of potential epigenetic dysregulation of these genes. We also find a potential prognostic marker for worse progression-free outcomes in the form of higher CD14 infiltration in non-18LOH siNETs.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Multiômica , Variações do Número de Cópias de DNA/genética , Cromossomos Humanos Par 18 , Neoplasias Intestinais/genética , Metilação de DNA/genética , Perda de Heterozigosidade/genética , Microambiente Tumoral
5.
Wellcome Open Res ; 7: 41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592546

RESUMO

Epigenome-wide association studies (EWAS) seek to quantify associations between traits/exposures and DNA methylation measured at thousands or millions of CpG sites across the genome. In recent years, the increase in availability of DNA methylation measures in population-based cohorts and case-control studies has resulted in a dramatic expansion of the number of EWAS being performed and published. To make this rich source of results more accessible, we have manually curated a database of CpG-trait associations (with p<1x10 -4) from published EWAS, each assaying over 100,000 CpGs in at least 100 individuals. From January 7, 2022, The EWAS Catalog contained 1,737,746 associations from 2,686 EWAS. This includes 1,345,398 associations from 342 peer-reviewed publications. In addition, it also contains summary statistics for 392,348 associations from 427 EWAS, performed on data from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Gene Expression Omnibus (GEO). The database is accompanied by a web-based tool and R package, giving researchers the opportunity to query EWAS associations quickly and easily, and gain insight into the molecular underpinnings of disease as well as the impact of traits and exposures on the DNA methylome. The EWAS Catalog data extraction team continue to update the database monthly and we encourage any EWAS authors to upload their summary statistics to our website. Details of how to upload data can be found here: http://www.ewascatalog.org/upload. The EWAS Catalog is available at http://www.ewascatalog.org.

6.
Mutat Res Rev Mutat Res ; 789: 108415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35690418

RESUMO

BACKGROUND: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. METHODS: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5-10 years from 8 cohorts (n = 4268). RESULTS: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10-7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10-6) in older children and had methylation differences in the same direction. CONCLUSIONS: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.


Assuntos
Metilação de DNA , Epigenoma , Adolescente , Criança , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Caracteres Sexuais
7.
Nat Rev Genet ; 23(6): 369-383, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304597

RESUMO

DNA methylation data have become a valuable source of information for biomarker development, because, unlike static genetic risk estimates, DNA methylation varies dynamically in relation to diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathology. Reliable methods for genome-wide measurement at scale have led to the proliferation of epigenome-wide association studies and subsequently to the development of DNA methylation-based predictors across a wide range of health-related applications, from the identification of risk factors or exposures, such as age and smoking, to early detection of disease or progression in cancer, cardiovascular and neurological disease. This Review evaluates the progress of existing DNA methylation-based predictors, including the contribution of machine learning techniques, and assesses the uptake of key statistical best practices needed to ensure their reliable performance, such as data-driven feature selection, elimination of data leakage in performance estimates and use of generalizable, adequately powered training samples.


Assuntos
Metilação de DNA , Neoplasias , Biomarcadores , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , Neoplasias/genética
8.
Environ Res ; 204(Pt B): 112093, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562483

RESUMO

Mercury (Hg) is a ubiquitous heavy metal that originates from both natural and anthropogenic sources and is transformed in the environment to its most toxicant form, methylmercury (MeHg). Recent studies suggest that MeHg exposure can alter epigenetic modifications during embryogenesis. In this study, we examined associations between prenatal MeHg exposure and levels of cord blood DNA methylation (DNAm) by meta-analysis in up to seven independent studies (n = 1462) as well as persistence of those relationships in blood from 7 to 8 year-old children (n = 794). In cord blood, we found limited evidence of differential DNAm at cg24184221 in MED31 (ß = 2.28 × 10-4, p-value = 5.87 × 10-5) in relation to prenatal MeHg exposure. In child blood, we identified differential DNAm at cg15288800 (ß = 0.004, p-value = 4.97 × 10-5), also located in MED31. This repeated link to MED31, a gene involved in lipid metabolism and RNA Polymerase II transcription function, may suggest a DNAm perturbation related to MeHg exposure that persists into early childhood. Further, we found evidence for association between prenatal MeHg exposure and child blood DNAm levels at two additional CpGs: cg12204245 (ß = 0.002, p-value = 4.81 × 10-7) in GRK1 and cg02212000 (ß = -0.001, p-value = 8.13 × 10-7) in GGH. Prenatal MeHg exposure was associated with DNAm modifications that may influence health outcomes, such as cognitive or anthropometric development, in different populations.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Criança , Pré-Escolar , Metilação de DNA , Feminino , Sangue Fetal , Humanos , Complexo Mediador , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Estudos Prospectivos
9.
Clin Epigenetics ; 13(1): 206, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789321

RESUMO

BACKGROUND: DNA methylation (DNAm) performs excellently in the discrimination of current and former smokers from never smokers, where AUCs > 0.9 are regularly reported using a single CpG site (cg05575921; AHRR). However, there is a paucity of DNAm models which attempt to distinguish current, former and never smokers as individual classes. Derivation of a robust DNAm model that accurately distinguishes between current, former and never smokers would be particularly valuable to epidemiological research (as a more accurate smoking definition vs. self-report) and could potentially translate to clinical settings. Therefore, we appraise 4 DNAm models of ternary smoking status (that is, current, former and never smokers): methylation at cg05575921 (AHRR model), weighted scores from 13 CpGs created by Maas et al. (Maas model), weighted scores from a LASSO model of candidate smoking CpGs from the literature (candidate CpG LASSO model), and weighted scores from a LASSO model supplied with genome-wide 450K data (agnostic LASSO model). Discrimination is assessed by AUC, whilst classification accuracy is assessed by accuracy and kappa, derived from confusion matrices. RESULTS: We find that DNAm can classify ternary smoking status with reasonable accuracy, including when applied to external data. Ternary classification using only DNAm far exceeds the classification accuracy of simply assigning all classes as the most prevalent class (63.7% vs. 36.4%). Further, we develop a DNAm classifier which performs well in discriminating current from former smokers (agnostic LASSO model AUC in external validation data: 0.744). Finally, across our DNAm models, we show evidence of enrichment for biological pathways and human phenotype ontologies relevant to smoking, such as haemostasis, molybdenum cofactor synthesis, body fatness and social behaviours, providing evidence of the generalisability of our classifiers. CONCLUSIONS: Our findings suggest that DNAm can classify ternary smoking status with close to 65% accuracy. Both the ternary smoking status classifiers and current versus former smoking status classifiers address the present lack of former smoker classification in epigenetic literature; essential if DNAm classifiers are to adequately relate to real-world populations. To improve performance further, additional focus on improving discrimination of current from former smokers is necessary.


Assuntos
Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Epigenômica/métodos , Fumantes/estatística & dados numéricos , Adulto , Fumar Cigarros/epidemiologia , Metilação de DNA/genética , Epigenômica/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumantes/classificação
10.
Metabolites ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34436471

RESUMO

Many women who experience gestational diabetes (GDM), gestational hypertension (GHT), pre-eclampsia (PE), have a spontaneous preterm birth (sPTB) or have an offspring born small/large for gestational age (SGA/LGA) do not meet the criteria for high-risk pregnancies based upon certain maternal risk factors. Tools that better predict these outcomes are needed to tailor antenatal care to risk. Recent studies have suggested that metabolomics may improve the prediction of these pregnancy-related disorders. These have largely been based on targeted platforms or focused on a single pregnancy outcome. The aim of this study was to assess the predictive ability of an untargeted platform of over 700 metabolites to predict the above pregnancy-related disorders in two cohorts. We used data collected from women in the Born in Bradford study (BiB; two sub-samples, n = 2000 and n = 1000) and the Pregnancy Outcome Prediction study (POPs; n = 827) to train, test and validate prediction models for GDM, PE, GHT, SGA, LGA and sPTB. We compared the predictive performance of three models: (1) risk factors (maternal age, pregnancy smoking, BMI, ethnicity and parity) (2) mass spectrometry (MS)-derived metabolites (n = 718 quantified metabolites, collected at 26-28 weeks' gestation) and (3) combined risk factors and metabolites. We used BiB for the training and testing of the models and POPs for independent validation. In both cohorts, discrimination for GDM, PE, LGA and SGA improved with the addition of metabolites to the risk factor model. The models' area under the curve (AUC) were similar for both cohorts, with good discrimination for GDM (AUC (95% CI) BiB 0.76 (0.71, 0.81) and POPs 0.76 (0.72, 0.81)) and LGA (BiB 0.86 (0.80, 0.91) and POPs 0.76 (0.60, 0.92)). Discrimination was improved for the combined models (compared to the risk factors models) for PE and SGA, with modest discrimination in both studies (PE-BiB 0.68 (0.58, 0.78) and POPs 0.66 (0.60, 0.71); SGA-BiB 0.68 (0.63, 0.74) and POPs 0.64 (0.59, 0.69)). Prediction for sPTB was poor in BiB and POPs for all models. In BiB, calibration for the combined models was good for GDM, LGA and SGA. Retained predictors include 4-hydroxyglutamate for GDM, LGA and PE and glycerol for GDM and PE. MS-derived metabolomics combined with maternal risk factors improves the prediction of GDM, PE, LGA and SGA, with good discrimination for GDM and LGA. Validation across two very different cohorts supports further investigation on whether the metabolites reflect novel causal paths to GDM and LGA.

11.
Mol Psychiatry ; 26(6): 1832-1845, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33414500

RESUMO

Maternal anxiety during pregnancy is associated with adverse foetal, neonatal, and child outcomes, but biological mechanisms remain unclear. Altered foetal DNA methylation (DNAm) has been proposed as a potential underlying mechanism. In the current study, we performed a meta-analysis to examine the associations between maternal anxiety, measured prospectively during pregnancy, and genome-wide DNAm from umbilical cord blood. Sixteen non-overlapping cohorts from 12 independent longitudinal studies of the Pregnancy And Childhood Epigenetics Consortium participated, resulting in a combined dataset of 7243 mother-child dyads. We examined prenatal anxiety in relation to genome-wide DNAm and differentially methylated regions. We observed no association between the general symptoms of anxiety during pregnancy or pregnancy-related anxiety, and DNAm at any of the CpG sites, after multiple-testing correction. Furthermore, we identify no differentially methylated regions associated with maternal anxiety. At the cohort-level, of the 21 associations observed in individual cohorts, none replicated consistently in the other cohorts. In conclusion, contrary to some previous studies proposing cord blood DNAm as a promising potential mechanism explaining the link between maternal anxiety during pregnancy and adverse outcomes in offspring, we found no consistent evidence for any robust associations between maternal anxiety and DNAm in cord blood. Larger studies and analysis of DNAm in other tissues may be needed to establish subtle or subgroup-specific associations between maternal anxiety and the foetal epigenome.


Assuntos
Metilação de DNA , Epigenoma , Ansiedade/genética , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Feminino , Humanos , Gravidez
12.
Genome Med ; 12(1): 105, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239103

RESUMO

BACKGROUND: DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. METHODS: We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. RESULTS: DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7). CONCLUSIONS: There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.


Assuntos
Índice de Massa Corporal , Metilação de DNA , Epigênese Genética , Obesidade/genética , Parto , Adolescente , Criança , Pré-Escolar , Ilhas de CpG , Estudos Transversais , Epigenoma , Feminino , Sangue Fetal , Humanos , Masculino , Obesidade Infantil/genética , Gravidez
13.
BMC Med ; 18(1): 366, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33222689

RESUMO

BACKGROUND: Prediction of pregnancy-related disorders is usually done based on established and easily measured risk factors. Recent advances in metabolomics may provide earlier and more accurate prediction of women at risk of pregnancy-related disorders. METHODS: We used data collected from women in the Born in Bradford (BiB; n = 8212) and UK Pregnancies Better Eating and Activity Trial (UPBEAT; n = 859) studies to create and validate prediction models for pregnancy-related disorders. These were gestational diabetes mellitus (GDM), hypertensive disorders of pregnancy (HDP), small for gestational age (SGA), large for gestational age (LGA) and preterm birth (PTB). We used ten-fold cross-validation and penalised regression to create prediction models. We compared the predictive performance of (1) risk factors (maternal age, pregnancy smoking, body mass index (BMI), ethnicity and parity) to (2) nuclear magnetic resonance-derived metabolites (N = 156 quantified metabolites, collected at 24-28 weeks gestation) and (3) combined risk factors and metabolites. The multi-ethnic BiB cohort was used for training and testing the models, with independent validation conducted in UPBEAT, a multi-ethnic study of obese pregnant women. RESULTS: Maternal age, pregnancy smoking, BMI, ethnicity and parity were retained in the combined risk factor and metabolite models for all outcomes apart from PTB, which did not include maternal age. In addition, 147, 33, 96, 51 and 14 of the 156 metabolite traits were retained in the combined risk factor and metabolite model for GDM, HDP, SGA, LGA and PTB, respectively. These include cholesterol and triglycerides in very low-density lipoproteins (VLDL) in the models predicting GDM, HDP, SGA and LGA, and monounsaturated fatty acids (MUFA), ratios of MUFA to omega 3 fatty acids and total fatty acids, and a ratio of apolipoprotein B to apolipoprotein A-1 (APOA:APOB1) were retained predictors for GDM and LGA. In BiB, discrimination for GDM, HDP, LGA and SGA was improved in the combined risk factors and metabolites models. Risk factor area under the curve (AUC 95% confidence interval (CI)): GDM (0.69 (0.64, 0.73)), HDP (0.74 (0.70, 0.78)) and LGA (0.71 (0.66, 0.75)), and SGA (0.59 (0.56, 0.63)). Combined risk factor and metabolite models AUC 95% (CI): GDM (0.78 (0.74, 0.81)), HDP (0.76 (0.73, 0.79)) and LGA (0.75 (0.70, 0.79)), and SGA (0.66 (0.63, 0.70)). For GDM, HDP and LGA, but not SGA, calibration was good for a combined risk factor and metabolite model. Prediction of PTB was poor for all models. Independent validation in UPBEAT at 24-28 weeks and 15-18 weeks gestation confirmed similar patterns of results, but AUCs were attenuated. CONCLUSIONS: Our results suggest a combined risk factor and metabolite model improves prediction of GDM, HDP and LGA, and SGA, when compared to risk factors alone. They also highlight the difficulty of predicting PTB, with all models performing poorly.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Complicações na Gravidez/diagnóstico por imagem , Complicações na Gravidez/diagnóstico , Adulto , Estudos de Coortes , Feminino , Humanos , Gravidez , Estudos Prospectivos , Reprodutibilidade dos Testes , Fatores de Risco , Reino Unido
14.
Diabetes Care ; 43(1): 98-105, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31601636

RESUMO

OBJECTIVE: Maternal gestational diabetes mellitus (GDM) has been associated with adverse outcomes in the offspring. Growing evidence suggests that the epigenome may play a role, but most previous studies have been small and adjusted for few covariates. The current study meta-analyzed the association between maternal GDM and cord blood DNA methylation in the Pregnancy and Childhood Epigenetics (PACE) consortium. RESEARCH DESIGN AND METHODS: Seven pregnancy cohorts (3,677 mother-newborn pairs [317 with GDM]) contributed results from epigenome-wide association studies, using DNA methylation data acquired by the Infinium HumanMethylation450 BeadChip array. Associations between GDM and DNA methylation were examined using robust linear regression, with adjustment for potential confounders. Fixed-effects meta-analyses were performed using METAL. Differentially methylated regions (DMRs) were identified by taking the intersection of results obtained using two regional approaches: comb-p and DMRcate. RESULTS: Two DMRs were identified by both comb-p and DMRcate. Both regions were hypomethylated in newborns exposed to GDM in utero compared with control subjects. One DMR (chr 1: 248100345-248100614) was located in the OR2L13 promoter, and the other (chr 10: 135341870-135342620) was located in the gene body of CYP2E1. Individual CpG analyses did not reveal any differentially methylated loci based on a false discovery rate-adjusted P value threshold of 0.05. CONCLUSIONS: Maternal GDM was associated with lower cord blood methylation levels within two regions, including the promoter of OR2L13, a gene associated with autism spectrum disorder, and the gene body of CYP2E1, which is upregulated in type 1 and type 2 diabetes. Future studies are needed to understand whether these associations are causal and possible health consequences.


Assuntos
Metilação de DNA , Diabetes Gestacional , Epigênese Genética/fisiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Adulto , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/epidemiologia , Epigenoma/fisiologia , Feminino , Sangue Fetal/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Gravidez , Adulto Jovem
15.
Clin Epigenetics ; 11(1): 163, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775873

RESUMO

BACKGROUND: Recently, an alcohol predictor was developed using DNA methylation at 144 CpG sites (DNAm-Alc) as a biomarker for improved clinical or epidemiologic assessment of alcohol-related ill health. We validate the performance and characterise the drivers of this DNAm-Alc for the first time in independent populations. RESULTS: In N = 1049 parents from the Avon Longitudinal Study of Parents and Children (ALSPAC) Accessible Resource for Integrated Epigenomic Studies (ARIES) at midlife, we found DNAm-Alc explained 7.6% of the variation in alcohol intake, roughly half of what had been reported previously, and interestingly explained a larger 9.8% of Alcohol Use Disorders Identification Test (AUDIT) score, a scale of alcohol use disorder. Explanatory capacity in participants from the offspring generation of ARIES measured during adolescence was much lower. However, DNAm-Alc explained 14.3% of the variation in replication using the Head and Neck 5000 (HN5000) clinical cohort that had higher average alcohol consumption. To investigate whether this relationship was being driven by genetic and/or earlier environment confounding, we examined how earlier versus concurrent DNAm-Alc measures predicted AUDIT scores. In both ARIES parental and offspring generations, we observed associations between AUDIT and concurrent, but not earlier DNAm-Alc, suggesting independence from genetic and stable environmental contributions. CONCLUSIONS: The stronger relationship between DNAm-Alcs and AUDIT in parents at midlife compared to adolescents despite similar levels of consumption suggests that DNAm-Alc likely reflects long-term patterns of alcohol abuse. Such biomarkers may have potential applications for biomonitoring and risk prediction, especially in cases where reporting bias is a concern.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Metilação de DNA , Marcadores Genéticos , Adolescente , Adulto , Consumo de Bebidas Alcoólicas/efeitos adversos , Criança , Epigênese Genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Environ Health Perspect ; 127(5): 57012, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31148503

RESUMO

BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) [Formula: see text]] with prenatal [Formula: see text] and 14 with [Formula: see text] exposure. Two of the [Formula: see text] CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant ([Formula: see text]) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent [Formula: see text] exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal [Formula: see text] and or [Formula: see text] exposure, of which two [Formula: see text] DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Epigenoma , Sangue Fetal/química , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Adolescente , Poluição do Ar/efeitos adversos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez
17.
Nat Commun ; 10(1): 1893, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015461

RESUMO

Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.


Assuntos
Peso ao Nascer/genética , DNA/metabolismo , Epigênese Genética , Genoma Humano , Adolescente , Adulto , Índice de Massa Corporal , Criança , Ilhas de CpG , DNA/genética , Metilação de DNA , Feminino , Desenvolvimento Fetal/genética , Feto , Ácido Fólico/sangue , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fumar/efeitos adversos , Fumar/sangue , Fumar/genética
18.
Hum Mol Genet ; 26(20): 4067-4085, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016858

RESUMO

Pre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we meta-analysed the association between pre-pregnancy maternal BMI and methylation at over 450,000 sites in newborn blood DNA, across 19 cohorts (9,340 mother-newborn pairs). We attempted to infer causality by comparing the effects of maternal versus paternal BMI and incorporating genetic variation. In four additional cohorts (1,817 mother-child pairs), we meta-analysed the association between maternal BMI at the start of pregnancy and blood methylation in adolescents. In newborns, maternal BMI was associated with small (<0.2% per BMI unit (1 kg/m2), P < 1.06 × 10-7) methylation variation at 9,044 sites throughout the genome. Adjustment for estimated cell proportions greatly attenuated the number of significant CpGs to 104, including 86 sites common to the unadjusted model. At 72/86 sites, the direction of the association was the same in newborns and adolescents, suggesting persistence of signals. However, we found evidence for acausal intrauterine effect of maternal BMI on newborn methylation at just 8/86 sites. In conclusion, this well-powered analysis identified robust associations between maternal adiposity and variations in newborn blood DNA methylation, but these small effects may be better explained by genetic or lifestyle factors than a causal intrauterine mechanism. This highlights the need for large-scale collaborative approaches and the application of causal inference techniques in epigenetic epidemiology.


Assuntos
Herança Materna/genética , Obesidade/complicações , Resultado da Gravidez/genética , Adulto , Índice de Massa Corporal , Estudos de Coortes , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Herança Materna/fisiologia , Mães , Gravidez/fisiologia , Resultado da Gravidez/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
19.
Environ Mol Mutagen ; 58(6): 398-410, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28556291

RESUMO

Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Phthalates are known endocrine disruptors with ubiquitous exposures in the general population including pregnant women, and they have been linked with a number of adverse health outcomes. We examined the association between in utero phthalate exposure and altered patterns of cord blood DNA methylation in 336 Mexican-American newborns. Concentrations of 11 phthalate metabolites were analyzed in maternal urine samples collected at 13 and 26 weeks gestation as a measure of fetal exposure. DNA methylation was assessed using the Infinium HumanMethylation 450K BeadChip adjusting for cord blood cell composition. To identify differentially methylated regions (DMRs) that may be more informative than individual CpG sites, we used two different approaches, DMRcate and comb-p. Regional assessment by both methods identified 27 distinct DMRs, the majority of which were in relation to multiple phthalate metabolites. Most of the significant DMRs (67%) were observed for later pregnancy (26 weeks gestation). Further, 51% of the significant DMRs were associated with the di-(2-ethylhexyl) phthalate metabolites. Five individual CpG sites were associated with phthalate metabolite concentrations after multiple comparisons adjustment (FDR), all showing hypermethylation. Genes with DMRs were involved in inflammatory response (IRAK4 and ESM1), cancer (BRCA1 and LASP1), endocrine function (CNPY1), and male fertility (IFT140, TESC, and PRDM8). These results on differential DNA methylation in newborns with prenatal phthalate exposure provide new insights and targets to explore mechanism of adverse effects of phthalates on human health. Environ. Mol. Mutagen. 58:398-410, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Metilação de DNA/genética , Sangue Fetal/metabolismo , Exposição Materna , Ácidos Ftálicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Demografia , Feminino , Sangue Fetal/efeitos dos fármacos , Humanos , Recém-Nascido , Masculino , Metaboloma/efeitos dos fármacos , Gravidez
20.
Environ Health Perspect ; 125(4): 511-526, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28362264

RESUMO

BACKGROUND: Characterization of the epigenome is a primary interest for children's environmental health researchers studying the environmental influences on human populations, particularly those studying the role of pregnancy and early-life exposures on later-in-life health outcomes. OBJECTIVES: Our objective was to consider the state of the science in environmental epigenetics research and to focus on DNA methylation and the collective observations of many studies being conducted within the Children's Environmental Health and Disease Prevention Research Centers, as they relate to the Developmental Origins of Health and Disease (DOHaD) hypothesis. METHODS: We address the current laboratory and statistical tools available for epigenetic analyses, discuss methods for validation and interpretation of findings, particularly when magnitudes of effect are small, question the functional relevance of findings, and discuss the future for environmental epigenetics research. DISCUSSION: A common finding in environmental epigenetic studies is the small-magnitude epigenetic effect sizes that result from such exposures. Although it is reasonable and necessary that we question the relevance of such small effects, we present examples in which small effects persist and have been replicated across populations and across time. We encourage a critical discourse on the interpretation of such small changes and further research on their functional relevance for children's health. CONCLUSION: The dynamic nature of the epigenome will require an emphasis on future longitudinal studies in which the epigenome is profiled over time, over changing environmental exposures, and over generations to better understand the multiple ways in which the epigenome may respond to environmental stimuli.


Assuntos
Exposição Ambiental , Saúde Ambiental , Epigenômica , Criança , Saúde da Criança , Proteção da Criança , Metilação de DNA , Epigênese Genética , Feminino , Processos Grupais , Humanos , Estudos Longitudinais , Gravidez , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA