RESUMO
A simple and efficient procedure for synthesizing novel pincer-type tridentate N-heterocyclic carbene bisphenolate ligands is reported. The synthesis of pincer proligands with N,N'-disubstituted imidazoline core, 5 and 6, was carried out via triethylorthoformate-promoted cyclization of either N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)cyclohexanediamine, 3, or N,N'-bis(2-hydroxyphenyl)cyclohexanediamine, 4, in the presence of concentrated hydrochloric acid. Cyclic voltammograms of the ligands revealed ligand-centered redox activity, indicating the noninnocent nature of the ligands. The voltammograms of the ligands exhibit two successive one-electron oxidations and two consecutive one-electron reductions. In contrast to previous reports, the redox-active ligands in this study exhibit one-electron oxidation and reduction processes. All products were thoroughly characterized by using 1H and 13C NMR spectroscopy. The base-promoted deprotonation of the proligands and subsequent reaction with iron(II) and iron(III) chlorides yielded compounds 7 and 8. These compounds are binuclear and tetranuclear iron(III) complexes that do not contain carbene functional groups. Complexes 7 and 8 were characterized by using elemental analysis and single-crystal X-ray crystallography. At low catalyst loadings, both 7 and 8 exhibited high catalytic activity in the transfer hydrogenation of selected aldehydes and ketones.
RESUMO
Derivatization of (NHC)M-Cl (M = Ag, Au) with selected sulfur donors from the family of dialkyldithiophosphates and bis(2-mercapto-1-methylimidazolyl)borate ligands gave a series of heteroleptic mononuclear complexes. In single-crystal X-ray diffraction analysis, Ag(I) complexes adopted a trigonal planar geometry, while Au(I) complexes are near-linear. TD-DFT and hole-electron analyses of the selected complexes gave insight into the electronic features of the metal complexes. In vitro cellular tests were conducted on the human cancerous breast cell line MCF-7 using 2 and 8. The antibacterial activities of complexes 1, 2, 3, 7, 8, and IPr-Ag-Cl were also screened against Gram-positive (Staphylococcus aureus PTCC 1112) and Gram-negative (Escherichia coli PTCC 1330) bacteria. Antityrosinase and hemolytic effects of the selected compounds were also determined.
Assuntos
Monofenol Mono-Oxigenase , Prata , Humanos , Prata/farmacologia , Prata/química , Ouro/farmacologia , Ouro/química , Antibacterianos/farmacologia , Antibacterianos/química , Metano/farmacologia , Metano/químicaRESUMO
[This corrects the article DOI: 10.1021/acsomega.3c00645.].
RESUMO
The role of bridging and terminal ligand electronic and steric properties on the structure and antiproliferative activity of two-coordinated gold(I) complexes was investigated on seven novel binuclear and trinuclear gold(I) complexes synthesized by the reaction of either Au2(dppm)Cl2, Au2(dppe)Cl2, or Au2(dppf)Cl2 with potassium diisopropyldithiophosphate, K[(S-OiPr)2], potassium dicyclohexyldithiophosphate, K[(S-OCy)2], or sodium bis(methimazolyl)borate, Na(S-Mt)2, which afforded air-stable gold(I) complexes. In 1-7, the gold(I) centers adopt a two-coordinated linear geometry and are structurally similar. However, their structural features and antiproliferative properties highly depend upon subtle ligand substituent changes. All complexes were validated by 1H, 13C{1H}, 31P NMR, and IR spectroscopy. The solid-state structures of 1, 2, 3, 6, and 7 were confirmed using single-crystal X-ray diffraction. A density functional theory geometry optimization calculation was used to extract further structural and electronic information. To investigate the possible cytotoxicities of 2, 3, and 7, in vitro cellular tests were carried out on the human cancerous breast cell line MCF-7. 2 and 7 show promising cytotoxicity.