RESUMO
BACKGROUND: Nowadays, evaluation of the efficacy and the duration of treatment, in context of monitoring patients with solid tumors, is based on the RECIST methodology. With these criteria, resistance and/or insensitivity are defined as tumor non-response which does not allow a good understanding of the diversity of the underlying mechanisms. The main objective of the OncoSNIPE® collaborative clinical research program is to identify early and late markers of resistance to treatment. METHODS: Multicentric, interventional study with the primary objective to identify early and / or late markers of resistance to treatment, in 600 adult patients with locally advanced or metastatic triple negative or Luminal B breast cancer, non-small-cell lung cancer or pancreatic ductal adenocarcinoma. Patients targeted in this study have all rapid progression of their pathology, making it possible to obtain models for evaluating markers of early and / or late responses over the 2-year period of follow-up, and thus provide the information necessary to understand resistance mechanisms. To explore the phenomena of resistance, during therapeutic response and / or progression of the pathology, we will use a multidisciplinary approach including high-throughput sequencing (Exome-seq and RNAseq), clinical data, medical images and immunological profile by ELISA. Patients will have long-term follow-up with different biological samples, at baseline (blood and biopsy) and at each tumoral evaluation or tumoral progression evaluated by medical imaging. Clinical data will be collected through a dedicated Case Report Form (CRF) and enriched by semantic extraction based on the French ConSoRe (Continuum Soins Recherche) initiative, a dedicated Semantic Clinical Data Warehouse (SCDW) to cancer. The study is sponsored by Oncodesign (Dijon, France) and is currently ongoing. DISCUSSION: The great diversity of intrinsic or acquired molecular mechanisms involved in resistance to treatment constitutes a real therapeutic issue. Improving understanding of mechanisms of resistance of cancer cells to anti-tumor treatments is therefore a major challenge. The OncoSNIPE cohort will lead to a better understanding of the mechanisms of resistance and will allow to explore new mechanisms of actions and to discover new therapeutic targets or strategies making it possible to circumvent the escape in different types of cancer. TRIAL REGISTRATION: Clinicaltrial.gov. Registered 16 September 2020, https://clinicaltrials.gov/ct2/show/NCT04548960?term=oncosnipe&draw=2&rank=1 and ANSM ID RCB 2017-A02018-45.
Assuntos
Neoplasias/terapia , Critérios de Avaliação de Resposta em Tumores Sólidos , Adulto , Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Resistência à Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Neoplasias/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapiaRESUMO
Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.
Assuntos
Adamantano/análogos & derivados , Compostos de Benzil/farmacologia , Endossomos/efeitos dos fármacos , Ricina/antagonistas & inibidores , Toxinas Biológicas/antagonistas & inibidores , Adamantano/química , Adamantano/farmacologia , Animais , Compostos de Benzil/química , Benzilaminas , Compartimento Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Camundongos , Ricina/efeitos dos fármacos , Ricina/toxicidade , Toxinas Biológicas/química , Toxinas Biológicas/toxicidadeRESUMO
Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 µM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS) as well as to an antibody (mAb 17b) directed against the gp120 co-receptor binding site with an IC50 in the low µM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.
Assuntos
Biflavonoides/farmacologia , Catequina/farmacologia , Cinnamomum zeylanicum/química , Proteína gp120 do Envelope de HIV/metabolismo , Heparitina Sulfato/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Proantocianidinas/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/efeitos dos fármacos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Biflavonoides/química , Sítios de Ligação , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Catequina/química , Humanos , Proantocianidinas/química , Proantocianidinas/metabolismo , Linfócitos T/imunologia , Regulação para Cima/efeitos dos fármacosRESUMO
We evaluated the immunogenicity of a prime/boost vaccine strategy combining 5 lipopeptides (HIV-Lipo-5) and a recombinant modified vaccinia virus Ankara (rMVA-HIV) in cynomolgus macaques. Both of these vaccine components deliver HIV LAI Gag, Pol, and Nef antigens. Systemic and local safety was excellent in all groups. Immunization with HIV-Lipo-5 alone induced significant serum anti-HIV antibody titers which were not modified by rMVA-HIV immunization. However, induction of T-cell responses, as measured by IFNγ and IL-2 producing cells upon short-term stimulation with HIV peptide pools, required combined immunization with rMVA-HIV. Responses were preferentially observed against Gag antigen. Interestingly, HIV-Lipo-5 efficiently primed HIV induced T-cell responses upon the injection of rMVA-HIV, which may help to reduce the required number of vector injections. Our results provide a rationale for the use of a strategy involving HIV-Lipo-5 priming followed by rMVA-HIV booster immunization as a prophylactic or therapeutic vaccine approach against HIV infection and AIDS.
Assuntos
Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/sangue , Antígenos HIV/imunologia , Lipopeptídeos/imunologia , Linfócitos T/imunologia , Vaccinia virus/genética , Vacinas contra a AIDS/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/sangue , Citocinas/imunologia , ELISPOT , Anticorpos Anti-HIV/imunologia , Antígenos HIV/administração & dosagem , Imunização Secundária , Interferon gama/imunologia , Interleucina-2/imunologia , Macaca fascicularis , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologiaRESUMO
Due to their hydrophilic nature, most nucleoside reverse transcriptase inhibitors (NRTIs) display a variable bioavailability after oral administration and a poor control over their biodistribution, thus hampering their access to HIV sanctuaries. The limited cellular uptake and activation in the triphosphate form of NRTIs further restrict their efficacy and favour the emergence of viral resistance. We have shown that the conjugation of squalene (sq) to the nucleoside analogues dideoxycytidine (ddC) and didanosine (ddI) leads to amphiphilic prodrugs (ddC-sq and ddI-sq) that spontaneously self-organize in water as stable nanoassemblies of 100-300 nm. These nanoassemblies can also be formulated with polyethylene glycol coupled to either cholesterol (Chol-PEG) or squalene (sq-PEG). When incubated with peripheral blood mononuclear cells (PBMCs) in vitro infected with HIV, the NRTI-sq prodrugs enhanced the antiviral efficacy of the parent NRTIs, with a 2- to 3-fold decrease of the 50% effective doses and a nearly 2-fold increase of the selectivity index. This was also the case with HIV-1 strains resistant to ddC and/or ddI. The enhanced antiviral activity of ddI-sq was correlated with an up to 5-fold increase in the intracellular concentration of the corresponding pharmacologically active metabolite ddA-TP. The ddI-sq prodrug was further investigated in vivo by the oral route, the preferred route of administration of NRTIs. Pharmacokinetics studies performed on rats showed that the prodrug maintained low amounts of free ddI in the plasma. Administration of (3)H-ddI-sq led to radioactivity levels higher in the plasma and relevant organs in HIV infection as compared to administration of free (3)H-ddI. Taken together, these results show the potential of the squalenoylated prodrugs of NRTIs to enhance their absorption and improve their biodistribution, but also to enhance their intracellular delivery and antiviral efficacy towards HIV-infected cells.
Assuntos
Fármacos Anti-HIV/farmacologia , Nanopartículas/química , Nucleosídeos/farmacologia , Pró-Fármacos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Esqualeno/química , Trifosfato de Adenosina/farmacologia , Animais , Fármacos Anti-HIV/farmacocinética , Didanosina/química , Didanosina/farmacocinética , Didanosina/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Luz , Nanopartículas/ultraestrutura , Nucleosídeos/química , Nucleosídeos/farmacocinética , Tamanho da Partícula , Ratos , Ratos Wistar , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacocinética , Espalhamento de Radiação , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento , Trítio , Zalcitabina/química , Zalcitabina/farmacologiaRESUMO
4-(N)-1,1',2-trisnor-squalenoyldideoxycytidine monophosphate (SQddC-MP) and 4-(N)-1,1',2-trisnor-squalenoylgemcitabine monophosphate (SQdFdC-MP) were synthesized using phosphoramidite chemistry. These amphiphilic molecules self-assembled to about hundred nanometers size nanoassemblies in aqueous medium. Nanoassemblies of SQddC-MP displayed significant anti-HIV activity whereas SQdFdC-MP nanoassemblies displayed promising anticancer activity on leukemia cells. These results suggested that squalene conjugate of negatively charged nucleotide analogues efficiently penetrated within cells. Thus, we propose a new prodrug strategy for improved delivery of nucleoside analogues to ameliorate their biological efficacy.