Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39058097

RESUMO

Imidacloprid (IMI) is a commonly used new-generation pesticide that has numerous harmful effects on non-targeted organisms, including animals. This study analysed both the adverse effects on the pancreas following oral consumption of imidacloprid neonicotinoids (45 mg/kg daily for 30 days) and the potential protective effects of lycopene (LYC) administration (10 mg/kg/day for 30 days) with IMI exposure in male Sprague-Dawley rats. The apoptotic, pyroptotic, inflammatory, oxidative stress, and endoplasmic reticulum stress biomarkers were evaluated, along with the histopathological alterations. Upon IMI administration, noticeable changes were observed in pancreatic histopathology. Additionally, elevated oxidative/endoplasmic reticulum-associated stress biomarkers, inflammatory, pyroptotic, and apoptotic biomarkers were also observed following IMI administration. LYC effectively reversed these alterations by reducing oxidative stress markers (e.g., MDA) and enhancing antioxidant enzymes (SOD, CAT). It downregulated ER stress markers (IRE1α, XBP1, CHOP), decreased pro-inflammatory cytokines (TNF-α, IL-1ß), and suppressed pyroptotic (NLRP3, caspase-1) along with apoptotic markers (Bax, cleaved caspase-3). It also improved the histopathological and ultrastructure alterations brought on by IMI toxicity.

2.
Biofactors ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074847

RESUMO

Concerns have been expressed about imidacloprid (IMI), one of the most often used pesticides, and its potential neurotoxicity to non-target organisms. Chronic neuroinflammation is central to the pathology of several neurodegenerative disorders. Hence, exploring the molecular mechanism by which IMI would trigger neuroinflammation is particularly important. This study examined the neurotoxic effects of oral administration of IMI (45 mg/kg/day for 30 days) and the potential neuroprotective effect of berberine (Ber) chloride loaded nano-PEGylated liposomes (Ber-Lip) (10 mg/kg, intravenously every other day for 30 days) using laboratory rat. The histopathological changes, anti-oxidant and oxidative stress markers (GSH, SOD, and MDA), proinflammatory cytokines (IL1ß and TNF-α), microglia phenotype markers (CD86 and iNOS for M1; CD163 for M2), the canonical pyroptotic pathway markers (NLRP3, caspase-1, GSDMD, and IL-18) and Alzheimer's disease markers (Neprilysin and beta amyloid [Aß] deposits) were assessed. Oral administration of IMI resulted in apparent cerebellar histopathological alterations, oxidative stress, predominance of M1 microglia phenotype, significantly upregulated NLRP3, caspase-1, GSDMD, IL-18 and Aß deposits and significantly decreased Neprilysin expression. Berberine reduced the IMI-induced aberrations in the measured parameters and improved the IMI-induced histopathological and ultrastructure alterations brought on by IMI. This study highlights the IMI neurotoxic effect and its potential contribution to the development of Alzheimer's disease and displayed the neuroprotective effect of Ber-Lip.

3.
Ecotoxicol Environ Saf ; 279: 116499, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805828

RESUMO

There are various substances that can disrupt the homeostatic mechanisms of the body, defined as endocrine-disrupting chemicals (EDCs). The persistent nature of microplastics (MPs) is a cause for concern due to their ability to accumulate in food chains and widespread use, making their toxic effects particularly alarming. The potential of MPs for disrupting the endocrine system was observed in multiple tissues. Moreover, the adrenal gland is known to be extremely sensitive to EDCs, while with the effect of MPs on the adrenal gland has not previously been studied. This study aimed to highlight the potential polyethylene microplastics (PE-MPs) induced adreno-toxic effects rather than exploring the implicated mechanisms and concluding if melatonin (Mel) can afford protection against PE-MPs induced adreno-toxicity. To fulfill the goal, six groups of rats were used; control, Mel, PE-MPs (3.75 mg/kg), PE-MPs (15 mg/kg), PE-MPs (3.75 mg/kg) +Mel, and PE-MPs (15 mg/kg) +Mel. PE-MPs induced toxic changes in the adrenal cortex, which was evident by increased adrenal weight, histopathological examination, and ultrastructural changes detected by electron microscope. A reduction in serum cortisol and an increase in serum adrenocorticotropic hormone resulted from the adreno-toxic effects of PE-MPs. Mechanisms may include the reduction of steroidogenesis-related genes, as PE-MPs drastically reduce mRNA levels of StAR, Nr0b1, Cyp11A1, as well as Cyp11B1. Also, oxidative stress that results from PE-MPs is associated with higher rates of lipid peroxidation and decreased superoxide dismutase and glutathione. PE-MPs inflammatory effect was illustrated by elevated expression of IL-1ß and NF-kB, detected by immunohistochemical staining, in addition to increased expression of caspase-3 and mRNA of Bax, markers of proapoptotic activity. The impacts of PE-MPs were relatively dose-related, with the higher dose showing more significant toxicity than the lower one. Mel treatment was associated with a substantial amelioration of PE-MPs-induced toxic changes. Collectively, this study fills the knowledge gap about the MPs-induced adrenal cortex and elucidates various related toxic mechanisms. It also supports Mel's potential protective activity through antioxidant, anti-inflammatory, anti-apoptotic, and gene transcription regulatory effects.


Assuntos
Melatonina , Microplásticos , Polietileno , Animais , Melatonina/farmacologia , Masculino , Ratos , Polietileno/toxicidade , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/patologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ratos Wistar
4.
Antioxidants (Basel) ; 12(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37627483

RESUMO

Amoxicillin/clavulanate (Co-Amox), a commonly used antibiotic for the treatment of bacterial infections, has been associated with drug-induced liver damage. Quercetin (QR), a naturally occurring flavonoid with pleiotropic biological activities, has poor water solubility and low bioavailability. The objective of this work was to produce a more bioavailable formulation of QR (liposomes) and to determine the effect of its intraperitoneal pretreatment on the amelioration of Co-Amox-induced liver damage in male rats. Four groups of rats were defined: control, QR liposomes (QR-lipo), Co-Amox, and Co-Amox and QR-lipo. Liver injury severity in rats was evaluated for all groups through measurement of serum liver enzymes, liver antioxidant status, proinflammatory mediators, and microbiota modulation. The results revealed that QR-lipo reduced the severity of Co-Amox-induced hepatic damage in rats, as indicated by a reduction in serum liver enzymes and total liver antioxidant capacity. In addition, QR-lipo upregulated antioxidant transcription factors SIRT1 and Nrf2 and downregulated liver proinflammatory signatures, including IL-6, IL-1ß, TNF-α, NF-κB, and iNOS, with upregulation in the anti-inflammatory one, IL10. QR-lipo also prevented Co-Amox-induced gut dysbiosis by favoring the colonization of Lactobacillus, Bifidobacterium, and Bacteroides over Clostridium and Enterobacteriaceae. These results suggested that QR-lipo ameliorates Co-Amox-induced liver damage by targeting SIRT1/Nrf2/NF-κB and modulating the microbiota.

5.
Toxicology ; 492: 153545, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37169321

RESUMO

Microplastics (MPs) pollution is a newly emerging environmental issue. MPs can accumulate within animals and humans, which can pose a serious health threat. Petroleum-based polyethylene (PE) is one of the most popular plastics. Accordingly, its exposure rates have steadily increased over the years. This study aimed to analyze the effects of PE-MPs on the hematological system of albino rats and the epigenetic effect. Five groups of adult male eight-weeks-old rats received either distilled water, corn oil, 3.75 mg/kg PE-MPs, 15 mg/kg PE-MPs, or 60 mg/kg of PE-MPs, daily by oral gavage for 35 days. PE-MPs significantly increased the body weights of the rats and lipid peroxidation, with concomitant reduction of superoxide dismutase activity and depletion of reduced glutathione, thus adversely affecting oxidants/antioxidants balance. Moreover, PE-MPs increased the % of abnormal RBCs, irregular cells, tear drop cells, Schistocyte cells, and folded cells. The genotoxic effects on DNA were evident by increased DNA damage, confirmed by the comet assay, in addition to increased DNA methylation. The effects of PE-MPs have been shown to be dose correlated. In conclusion, this study provides evidence of dose-related PE-MPs-induced hematological, genotoxic, and epigenetic effects in mammals, and thus emphasizes the potentially hazardous health effects of environmental PE-MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Masculino , Epigênese Genética , Mamíferos , Microplásticos/toxicidade , Estresse Oxidativo , Plásticos/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/toxicidade , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA