Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 352, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191557

RESUMO

Heterogeneous response to Enzalutamide, a second-generation androgen receptor signaling inhibitor, is a central problem in castration-resistant prostate cancer (CRPC) management. Genome-wide systems investigation of mechanisms that govern Enzalutamide resistance promise to elucidate markers of heterogeneous treatment response and salvage therapies for CRPC patients. Focusing on the de novo role of MYC as a marker of Enzalutamide resistance, here we reconstruct a CRPC-specific mechanism-centric regulatory network, connecting molecular pathways with their upstream transcriptional regulatory programs. Mining this network with signatures of Enzalutamide response identifies NME2 as an upstream regulatory partner of MYC in CRPC and demonstrates that NME2-MYC increased activities can predict patients at risk of resistance to Enzalutamide, independent of co-variates. Furthermore, our experimental investigations demonstrate that targeting MYC and its partner NME2 is beneficial in Enzalutamide-resistant conditions and could provide an effective strategy for patients at risk of Enzalutamide resistance and/or for patients who failed Enzalutamide treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Receptores de Andrógenos , Benzamidas , Nucleosídeo NM23 Difosfato Quinases , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Transdução de Sinais
2.
Prostate Cancer Prostatic Dis ; 26(1): 105-112, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35568781

RESUMO

BACKGROUND: Data on advanced prostate cancer (PCa) suggest more prior systemic therapies might reduce tumor immune responsiveness. In treatment-naïve primary PCa, recent work correlated intratumoral plasma cell content with enhanced tumor immune-responsiveness. We sought to identify features of localized PCa at a high risk of recurrence following local treatment with high plasma cell content to help focus future immune-based neoadjuvant trials. METHODS: We performed retrospective analyses of molecular profiles from three independent cohorts of over 1300 prostate tumors. We used Wilcoxon Rank Sum to compare molecular pathways between tumors with high and low intratumoral plasma cell content and multivariable Cox proportional hazards regression analyses to assess metastasis-free survival. RESULTS: We validated an expression-based signature for intratumoral plasma cell content in 113 primary prostate tumors with both RNA-expression data and digital image quantification of CD138+ cells (plasma cell marker) based on immunohistochemisty. The signature showed castration-resistant tumors (n = 101) with more prior systemic therapies contained lower plasma cell content. In high-grade primary PCa, tumors with high plasma cell content were associated with increased predicted response to immunotherapy and decreased response to androgen-deprivation therapy. Master regulator analyses identified upregulated transcription factors implicated in immune (e.g. SKAP1, IL-16, and HCLS1), and B-cell activity (e.g. VAV1, SP140, and FLI-1) in plasma cell-high tumors. Master regulators overactivated in tumors with low plasma cell content were associated with shorter metastasis-free survival following radical prostatectomy. CONCLUSIONS: Markers of plasma cell activity might be leveraged to augment clinical trial targeting and selection and better understand the potential for immune-based treatments in patients with PCa at a high risk of recurrence following local treatment.


Assuntos
Imunoterapia , Plasmócitos , Neoplasias da Próstata , Estudos Retrospectivos , Humanos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Plasmócitos/patologia , Imuno-Histoquímica/métodos , Sindecana-1/análise , Regulação para Cima , Prostatectomia
3.
Genome Med ; 14(1): 11, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105355

RESUMO

We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information "impressions," which allow individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma multiforme (GBM), Alzheimer's disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified PHF19high myeloma cells associated with progression. Availability: https://github.com/tsteelejohnson91/DEGAS .


Assuntos
Doença de Alzheimer , Análise de Célula Única , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Humanos , Aprendizado de Máquina , Transcriptoma
4.
Oncotarget ; 13: 291-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136486

RESUMO

Long noncoding RNAs (lncRNAs) are known to regulate gene expression; however, in many cases, the mechanism of this regulation is unknown. One novel lncRNA relevant to inflammation and arachidonic acid (AA) metabolism is the p50-associated COX-2 extragenic RNA (PACER). We focused our research on the regulation of PACER in lung cancer. While the function of PACER is not entirely understood, PACER is known to play a role in inflammation-associated conditions. Our data suggest that PACER is critically involved in COX-2 transcription and dysregulation in lung cancer cells. Our analysis of The Cancer Genome Atlas (TCGA) expression data revealed that PACER expression is significantly higher in lung adenocarcinomas than normal lung tissues. Additionally, we discovered that elevated PACER expression strongly correlates with COX-2 expression in lung adenocarcinoma patients. Specific siRNA-mediated knockdown of PACER decreases COX-2 expression indicating a direct relationship. Additionally, we show that PACER expression is induced upon treatment with proinflammatory cytokines to mimic inflammation. Treatment with prostaglandin E2 (PGE2) induces both PACER and COX-2 expression, suggesting a PGE2-mediated feedback loop. Inhibition of COX-2 with celecoxib decreased PACER expression, confirming this self-regulatory process. Significant overlap between the COX-2 promotor and the PACER promotor led us to investigate their transcriptional regulatory mechanisms. Treatment with pharmacologic inhibitors of NF-κB or AP-1 showed a modest effect on both PACER and COX-2 expression but did not eliminate expression. These data suggest that the regulation of expression of both PACER and COX-2 is complex and intricately linked.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Ácido Araquidônico/metabolismo , Celecoxib , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição AP-1/metabolismo
5.
BMC Bioinformatics ; 22(Suppl 4): 111, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34689740

RESUMO

BACKGROUND: Gene co-expression networks are widely studied in the biomedical field, with algorithms such as WGCNA and lmQCM having been developed to detect co-expressed modules. However, these algorithms have limitations such as insufficient granularity and unbalanced module size, which prevent full acquisition of knowledge from data mining. In addition, it is difficult to incorporate prior knowledge in current co-expression module detection algorithms. RESULTS: In this paper, we propose a novel module detection algorithm based on topology potential and spectral clustering algorithm to detect co-expressed modules in gene co-expression networks. By testing on TCGA data, our novel method can provide more complete coverage of genes, more balanced module size and finer granularity than current methods in detecting modules with significant overall survival difference. In addition, the proposed algorithm can identify modules by incorporating prior knowledge. CONCLUSION: In summary, we developed a method to obtain as much as possible information from networks with increased input coverage and the ability to detect more size-balanced and granular modules. In addition, our method can integrate data from different sources. Our proposed method performs better than current methods with complete coverage of input genes and finer granularity. Moreover, this method is designed not only for gene co-expression networks but can also be applied to any general fully connected weighted network.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Algoritmos , Análise por Conglomerados , Expressão Gênica
6.
Oncogene ; 40(42): 6130-6138, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34504297

RESUMO

Neoantigen peptides arising from genetic alterations may serve as targets for personalized cancer vaccines and as positive predictors of response to immune checkpoint therapy. Mutations in genes regulating RNA splicing are common in hematological malignancies leading to dysregulated splicing and intron retention (IR). In this study, we investigated IR as a potential source of tumor neoantigens in multiple myeloma (MM) patients and the relationship of IR-induced neoantigens (IR-neoAg) with clinical outcomes. MM-specific IR events were identified in RNA-sequencing data from the Multiple Myeloma Research Foundation CoMMpass study after removing IR events that also occurred in normal plasma cells. We quantified the IR-neoAg load by assessing IR-induced novel peptides that were predicted to bind to major histocompatibility complex (MHC) molecules. We found that high IR-neoAg load was associated with poor overall survival in both newly diagnosed and relapsed MM patients. Further analyses revealed that poor outcome in MM patients with high IR-neoAg load was associated with high expression levels of T-cell co-inhibitory molecules and elevated interferon signaling activity. We also found that MM cells exhibiting high IR levels had lower MHC-II protein abundance and treatment of MM cells with a spliceosome inhibitor resulted in increased MHC-I protein abundance. Our findings suggest that IR-neoAg may represent a novel biomarker of MM patient clinical outcome and further that targeting RNA splicing may serve as a potential therapeutic strategy to prevent MM immune escape and promote response to checkpoint blockade.


Assuntos
Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Mieloma Múltiplo/genética , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Íntrons , Masculino , Mutação , Prognóstico , Splicing de RNA , Análise de Sobrevida
7.
Front Genet ; 12: 687813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408770

RESUMO

Biomarker discovery is at the heart of personalized treatment planning and cancer precision therapeutics, encompassing disease classification and prognosis, prediction of treatment response, and therapeutic targeting. However, many biomarkers represent passenger rather than driver alterations, limiting their utilization as functional units for therapeutic targeting. We suggest that identification of driver biomarkers through mechanism-centric approaches, which take into account upstream and downstream regulatory mechanisms, is fundamental to the discovery of functionally meaningful markers. Here, we examine computational approaches that identify mechanism-centric biomarkers elucidated from gene co-expression networks, regulatory networks (e.g., transcriptional regulation), protein-protein interaction (PPI) networks, and molecular pathways. We discuss their objectives, advantages over gene-centric approaches, and known limitations. Future directions highlight the importance of input and model interpretability, method and data integration, and the role of recently introduced technological advantages, such as single-cell sequencing, which are central for effective biomarker discovery and time-cautious precision therapeutics.

8.
Methods ; 192: 46-56, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33894380

RESUMO

Copy number variation (CNV) is a major type of chromosomal structural variation that play important roles in many diseases including cancers. Due to genome instability, a large number of CNV events can be detected in diseases such as cancer. Therefore, it is important to identify the functionally important CNVs in diseases, which currently still poses a challenge in genomics. One of the critical steps to solve the problem is to define the influence of CNV. In this paper, we provide a topology potential based method, TPQCI, to quantify this kind of influence by integrating statistics, gene regulatory associations, and biological function information. We used this metric to detect functionally enriched genes on genomic segments with CNV in breast cancer and multiple myeloma and discovered biological functions influenced by CNV. Our results demonstrate that, by using our proposed TPQCI metric, we can detect disease-specific genes that are influenced by CNVs. Source codes of TPQCI are provided in Github (https://github.com/usos/TPQCI).


Assuntos
Variações do Número de Cópias de DNA , Neoplasias da Mama , Variações do Número de Cópias de DNA/genética , Feminino , Regulação da Expressão Gênica , Genômica , Humanos
9.
BMC Med Genomics ; 13(Suppl 11): 190, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33371886

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a complex disease and is comprised of several histological subtypes, the most frequent of which are clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (PRCC) and chromophobe renal cell carcinoma (ChRCC). While lots of studies have been performed to investigate the molecular characterizations of different subtypes of RCC, our knowledge regarding the underlying mechanisms are still incomplete. As molecular alterations are eventually reflected on the pathway level to execute certain biological functions, characterizing the pathway perturbations is crucial for understanding tumorigenesis and development of RCC. METHODS: In this study, we investigated the pathway perturbations of various RCC subtype against normal tissue based on differential expressed genes within a certain pathway. We explored the potential upstream regulators of subtype-specific pathways with Ingenuity Pathway Analysis (IPA). We also evaluated the relationships between subtype-specific pathways and clinical outcome with survival analysis. RESULTS: In this study, we carried out a pathway-based analysis to explore the mechanisms of various RCC subtypes with TCGA RNA-seq data. Both commonly altered pathways and subtype-specific pathways were detected. To identify the distinctive characteristics of each subtype, we focused on subtype-specific perturbed pathways. Specifically, we observed that some of the altered pathways were regulated by several recurrent upstream regulators which presenting different expression patterns among distinct RCC subtypes. We also noticed that a large number of perturbed pathways were controlled by the subtype-specific upstream regulators. Moreover, we also evaluated the relationships between perturbed pathways and clinical outcome. Prognostic pathways were identified and their roles in tumor development and progression were inferred. CONCLUSIONS: In summary, we evaluated the relationships among pathway perturbations, upstream regulators and clinical outcome for differential subtypes in RCC. We hypothesized that the alterations of common upstream regulators as well as subtype-specific upstream regulators work together to affect the downstream pathway perturbations and drive cancer initialization and prognosis. Our findings not only increase our understanding of the mechanisms of various RCC subtypes, but also provide targets for personalized therapeutic intervention.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Renais/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/classificação , Carcinoma de Células Renais/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Renais/classificação , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Adulto Jovem
10.
BMC Med Genomics ; 13(Suppl 11): 195, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33371906

RESUMO

BACKGROUND: Existing studies have demonstrated that the integrative analysis of histopathological images and genomic data can be used to better understand the onset and progression of many diseases, as well as identify new diagnostic and prognostic biomarkers. However, since the development of pathological phenotypes are influenced by a variety of complex biological processes, complete understanding of the underlying gene regulatory mechanisms for the cell and tissue morphology is still a challenge. In this study, we explored the relationship between the chromatin accessibility changes and the epithelial tissue proportion in histopathological images of estrogen receptor (ER) positive breast cancer. METHODS: An established whole slide image processing pipeline based on deep learning was used to perform global segmentation of epithelial and stromal tissues. We then used canonical correlation analysis to detect the epithelial tissue proportion-associated regulatory regions. By integrating ATAC-seq data with matched RNA-seq data, we found the potential target genes that associated with these regulatory regions. Then we used these genes to perform the following pathway and survival analysis. RESULTS: Using canonical correlation analysis, we detected 436 potential regulatory regions that exhibited significant correlation between quantitative chromatin accessibility changes and the epithelial tissue proportion in tumors from 54 patients (FDR < 0.05). We then found that these 436 regulatory regions were associated with 74 potential target genes. After functional enrichment analysis, we observed that these potential target genes were enriched in cancer-associated pathways. We further demonstrated that using the gene expression signals and the epithelial tissue proportion extracted from this integration framework could stratify patient prognoses more accurately, outperforming predictions based on only omics or image features. CONCLUSION: This integrative analysis is a useful strategy for identifying potential regulatory regions in the human genome that are associated with tumor tissue quantification. This study will enable efficient prioritization of genomic regulatory regions identified by ATAC-seq data for further studies to validate their causal regulatory function. Ultimately, identifying epithelial tissue proportion-associated regulatory regions will further our understanding of the underlying molecular mechanisms of disease and inform the development of potential therapeutic targets.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Cromatina/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Imagem Molecular/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Biologia Computacional/métodos , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Taxa de Sobrevida
11.
Artigo em Inglês | MEDLINE | ID: mdl-32850739

RESUMO

Expression quantitative trait loci (eQTL) analysis is useful for identifying genetic variants correlated with gene expression, however, it cannot distinguish between causal and nearby non-functional variants. Because the majority of disease-associated SNPs are located in regulatory regions, they can impact allele-specific binding (ASB) of transcription factors and result in differential expression of the target gene alleles. In this study, our aim was to identify functional single-nucleotide polymorphisms (SNPs) that alter transcriptional regulation and thus, potentially impact cellular function. Here, we present regSNPs-ASB, a generalized linear model-based approach to identify regulatory SNPs that are located in transcription factor binding sites. The input for this model includes ATAC-seq (assay for transposase-accessible chromatin with high-throughput sequencing) raw read counts from heterozygous loci, where differential transposase-cleavage patterns between two alleles indicate preferential transcription factor binding to one of the alleles. Using regSNPs-ASB, we identified 53 regulatory SNPs in human MCF-7 breast cancer cells and 125 regulatory SNPs in human mesenchymal stem cells (MSC). By integrating the regSNPs-ASB output with RNA-seq experimental data and publicly available chromatin interaction data from MCF-7 cells, we found that these 53 regulatory SNPs were associated with 74 potential target genes and that 32 (43%) of these genes showed significant allele-specific expression. By comparing all of the MCF-7 and MSC regulatory SNPs to the eQTLs in the Genome-Tissue Expression (GTEx) Project database, we found that 30% (16/53) of the regulatory SNPs in MCF-7 and 43% (52/122) of the regulatory SNPs in MSC were also in eQTL regions. The enrichment of regulatory SNPs in eQTLs indicated that many of them are likely responsible for allelic differences in gene expression (chi-square test, p-value < 0.01). In summary, we conclude that regSNPs-ASB is a useful tool for identifying causal variants from ATAC-seq data. This new computational tool will enable efficient prioritization of genetic variants identified as eQTL for further studies to validate their causal regulatory function. Ultimately, identifying causal genetic variants will further our understanding of the underlying molecular mechanisms of disease and the eventual development of potential therapeutic targets.

12.
BMC Med Genomics ; 13(Suppl 5): 41, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241264

RESUMO

BACKGROUND: Recent advances in kernel-based Deep Learning models have introduced a new era in medical research. Originally designed for pattern recognition and image processing, Deep Learning models are now applied to survival prognosis of cancer patients. Specifically, Deep Learning versions of the Cox proportional hazards models are trained with transcriptomic data to predict survival outcomes in cancer patients. METHODS: In this study, a broad analysis was performed on TCGA cancers using a variety of Deep Learning-based models, including Cox-nnet, DeepSurv, and a method proposed by our group named AECOX (AutoEncoder with Cox regression network). Concordance index and p-value of the log-rank test are used to evaluate the model performances. RESULTS: All models show competitive results across 12 cancer types. The last hidden layers of the Deep Learning approaches are lower dimensional representations of the input data that can be used for feature reduction and visualization. Furthermore, the prognosis performances reveal a negative correlation between model accuracy, overall survival time statistics, and tumor mutation burden (TMB), suggesting an association among overall survival time, TMB, and prognosis prediction accuracy. CONCLUSIONS: Deep Learning based algorithms demonstrate superior performances than traditional machine learning based models. The cancer prognosis results measured in concordance index are indistinguishable across models while are highly variable across cancers. These findings shedding some light into the relationships between patient characteristics and survival learnability on a pan-cancer level.


Assuntos
Algoritmos , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Neoplasias/mortalidade , RNA-Seq/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Taxa de Sobrevida , Transcriptoma , Adulto Jovem
13.
Front Genet ; 10: 468, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156714

RESUMO

Multiple myeloma (MM) has two clinical precursor stages of disease: monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). However, the mechanism of progression is not well understood. Because gene co-expression network analysis is a well-known method for discovering new gene functions and regulatory relationships, we utilized this framework to conduct differential co-expression analysis to identify interesting transcription factors (TFs) in two publicly available datasets. We then used copy number variation (CNV) data from a third public dataset to validate these TFs. First, we identified co-expressed gene modules in two publicly available datasets each containing three conditions: normal, MGUS, and SMM. These modules were assessed for condition-specific gene expression, and then enrichment analysis was conducted on condition-specific modules to identify their biological function and upstream TFs. TFs were assessed for differential gene expression between normal and MM precursors, then validated with CNV analysis to identify candidate genes. Functional enrichment analysis reaffirmed known functional categories in MM pathology, the main one relating to immune function. Enrichment analysis revealed a handful of differentially expressed TFs between normal and either MGUS or SMM in gene expression and/or CNV. Overall, we identified four genes of interest (MAX, TCF4, ZNF148, and ZNF281) that aid in our understanding of MM initiation and progression.

14.
Bioinformatics ; 35(22): 4696-4706, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038689

RESUMO

MOTIVATION: Rapid advances in single cell RNA sequencing (scRNA-seq) have produced higher-resolution cellular subtypes in multiple tissues and species. Methods are increasingly needed across datasets and species to (i) remove systematic biases, (ii) model multiple datasets with ambiguous labels and (iii) classify cells and map cell type labels. However, most methods only address one of these problems on broad cell types or simulated data using a single model type. It is also important to address higher-resolution cellular subtypes, subtype labels from multiple datasets, models trained on multiple datasets simultaneously and generalizability beyond a single model type. RESULTS: We developed a species- and dataset-independent transfer learning framework (LAmbDA) to train models on multiple datasets (even from different species) and applied our framework on simulated, pancreas and brain scRNA-seq experiments. These models mapped corresponding cell types between datasets with inconsistent cell subtype labels while simultaneously reducing batch effects. We achieved high accuracy in labeling cellular subtypes (weighted accuracy simulated 1 datasets: 90%; simulated 2 datasets: 94%; pancreas datasets: 88% and brain datasets: 66%) using LAmbDA Feedforward 1 Layer Neural Network with bagging. This method achieved higher weighted accuracy in labeling cellular subtypes than two other state-of-the-art methods, scmap and CaSTLe in brain (66% versus 60% and 32%). Furthermore, it achieved better performance in correctly predicting ambiguous cellular subtype labels across datasets in 88% of test cases compared with CaSTLe (63%), scmap (50%) and MetaNeighbor (50%). LAmbDA is model- and dataset-independent and generalizable to diverse data types representing an advance in biocomputing. AVAILABILITY AND IMPLEMENTATION: github.com/tsteelejohnson91/LAmbDA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Análise de Sequência de RNA , Análise de Célula Única
15.
Front Genet ; 10: 166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906311

RESUMO

Improved cancer prognosis is a central goal for precision health medicine. Though many models can predict differential survival from data, there is a strong need for sophisticated algorithms that can aggregate and filter relevant predictors from increasingly complex data inputs. In turn, these models should provide deeper insight into which types of data are most relevant to improve prognosis. Deep Learning-based neural networks offer a potential solution for both problems because they are highly flexible and account for data complexity in a non-linear fashion. In this study, we implement Deep Learning-based networks to determine how gene expression data predicts Cox regression survival in breast cancer. We accomplish this through an algorithm called SALMON (Survival Analysis Learning with Multi-Omics Neural Networks), which aggregates and simplifies gene expression data and cancer biomarkers to enable prognosis prediction. The results revealed improved performance when more omics data were used in model construction. Rather than use raw gene expression values as model inputs, we innovatively use eigengene modules from the result of gene co-expression network analysis. The corresponding high impact co-expression modules and other omics data are identified by feature selection technique, then examined by conducting enrichment analysis and exploiting biological functions, escalated the interpretation of input feature from gene level to co-expression modules level. Our study shows the feasibility of discovering breast cancer related co-expression modules, sketch a blueprint of future endeavors on Deep Learning-based survival analysis. SALMON source code is available at https://github.com/huangzhii/SALMON/.

16.
BMC Med Genomics ; 11(Suppl 6): 115, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30598117

RESUMO

BACKGROUND: Gene co-expression network (GCN) mining is a systematic approach to efficiently identify novel disease pathways, predict novel gene functions and search for potential disease biomarkers. However, few studies have systematically identified GCNs in multiple brain transcriptomic data of Alzheimer's disease (AD) patients and looked for their specific functions. METHODS: In this study, we first mined GCN modules from AD and normal brain samples in multiple datasets respectively; then identified gene modules that are specific to AD or normal samples; lastly, condition-specific modules with similar functional enrichments were merged and enriched differentially expressed upstream transcription factors were further examined for the AD/normal-specific modules. RESULTS: We obtained 30 AD-specific modules which showed gain of correlation in AD samples and 31 normal-specific modules with loss of correlation in AD samples compared to normal ones, using the network mining tool lmQCM. Functional and pathway enrichment analysis not only confirmed known gene functional categories related to AD, but also identified novel regulatory factors and pathways. Remarkably, pathway analysis suggested that a variety of viral, bacteria, and parasitic infection pathways are activated in AD samples. Furthermore, upstream transcription factor analysis identified differentially expressed upstream regulators such as ZFHX3 for several modules, which can be potential driver genes for AD etiology and pathology. CONCLUSIONS: Through our state-of-the-art network-based approach, AD/normal-specific GCN modules were identified using multiple transcriptomic datasets from multiple regions of the brain. Bacterial and viral infectious disease related pathways are the most frequently enriched in modules across datasets. Transcription factor ZFHX3 was identified as a potential driver regulator targeting the infectious diseases pathways in AD-specific modules. Our results provided new direction to the mechanism of AD as well as new candidates for drug targets.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Algoritmos , Doença de Alzheimer/metabolismo , Infecções Bacterianas/metabolismo , Mineração de Dados , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fatores de Transcrição/metabolismo , Viroses/metabolismo
17.
Mol Cancer Res ; 15(3): 237-249, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28039358

RESUMO

Senescent cells within the tumor microenvironment (TME) adopt a proinflammatory, senescence-associated secretory phenotype (SASP) that promotes cancer initiation, progression, and therapeutic resistance. Here, exposure to palbociclib (PD-0332991), a CDK4/6 inhibitor, induces senescence and a robust SASP in normal fibroblasts. Senescence caused by prolonged CDK4/6 inhibition is DNA damage-independent and associated with Mdm2 downregulation, whereas the SASP elicited by these cells is largely reliant upon NF-κB activation. Based upon these observations, it was hypothesized that the exposure of nontransformed stromal cells to PD-0332991 would promote tumor growth. Ongoing clinical trials of CDK4/6 inhibitors in melanoma prompted a validation of this hypothesis using a suite of genetically defined melanoma cells (i.e., Ras mutant, Braf mutant, and Ras/Braf wild-type). When cultured in the presence of CDK4/6i-induced senescent fibroblasts, melanoma cell lines exhibited genotype-dependent proliferative responses. However, in vivo, PD-0332991-treated fibroblasts enhanced the growth of all melanoma lines tested and promoted the recruitment of Gr-1-positive immune cells. These data indicate that prolonged CDK4/6 inhibitor treatment causes normal fibroblasts to enter senescence and adopt a robust SASP. Such senescent cells suppress the antitumor immune response and promote melanoma growth in immunocompetent, in vivo models.Implications: The ability of prolonged CDK4/6 inhibitor treatment to induce cellular senescence and a robust SASP in primary cells may hinder therapeutic efficacy and promote long-term, gerontogenic consequences that should be considered in clinical trials aiming to treat melanoma and other cancer types. Mol Cancer Res; 15(3); 237-49. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Humanos , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Células Estromais/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA