Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
World J Gastrointest Oncol ; 16(6): 2449-2462, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994132

RESUMO

BACKGROUND: Regorafenib (R) and fruquintinib (F) are the standard third-line regimens for colorectal cancer (CRC) according to the National Comprehensive Cancer Network guidelines, but both have limited efficacy. Several phase 2 trials have indicated that R or F combined with immune checkpoint inhibitors can reverse immunosuppression and achieve promising efficacy for microsatellite stable or proficient mismatch repair (MSS/pMMR) CRC. Due to the lack of studies comparing the efficacy between F, R, F plus programmed death-1 (PD-1) inhibitor, and R plus PD-1 inhibitors (RP), it is still unclear whether the combination therapy is more effective than monotherapy. AIM: To provide critical evidence for selecting the appropriate drugs for MSS/pMMR metastatic CRC (mCRC) patients in clinical practice. METHODS: A total of 2639 CRC patients were enrolled from January 2018 to September 2022 in our hospital, and 313 MSS/pMMR mCRC patients were finally included. RESULTS: A total of 313 eligible patients were divided into F (n = 70), R (n = 67), F plus PD-1 inhibitor (FP) (n = 95) and RP (n = 81) groups. The key clinical characteristics were well balanced among the groups. The median progression-free survival (PFS) of the F, R, FP, and RP groups was 3.5 months, 3.6 months, 4.9 months, and 3.0 months, respectively. The median overall survival (OS) was 14.6 months, 15.7 months, 16.7 months, and 14.1 months. The FP regimen had an improved disease control rate (DCR) (P = 0.044) and 6-month PFS (P = 0.014) and exhibited a better trend in PFS (P = 0.057) compared with F, and it was also significantly better in PFS than RP (P = 0.030). RP did not confer a significant survival benefit; instead, the R group had a trend toward greater benefit with OS (P = 0.080) compared with RP. No significant differences were observed between the R and F groups in PFS or OS (P > 0.05). CONCLUSION: FP is superior to F in achieving 6-month PFS and DCR, while RP is not better than R. FP has an improved PFS and 6-month PFS compared with RP, but F and R had similar clinical efficacy. Therefore, FP may be a highly promising strategy in the treatment of MSS/pMMR mCRC.

2.
Int Immunopharmacol ; 139: 112602, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39033660

RESUMO

Chronic pain has emerged as a significant public health issue, seriously affecting patients' quality of life and psychological well-being, with a lack of effective pharmacological treatments. Numerous studies have indicated that macrophages play a crucial role in inflammatory pain, and targeting neuro-immune interactions for drug development may represent a promising direction for pain management. Chilobrachys jingzhao (C. jingzhao) is used as a folk medicine of the Li nationality with the efficacy of eliminating swelling, detoxicating, and relieving pain, and the related products are widely used in the market. However, the chemical constituents of C. jingzhao have not been reported, and the pharmacodynamic substance and the precise functional mechanism are unrevealed. Here we isolated a cyclic dipeptide, cyclo(L-Pro-L-Trp) (CPT) from C. jingzhao for the first time. CPT remarkably alleviated formalin-induced inflammatory pain and significantly inhibited inflammatory responses. In vivo, CPT attenuated neutrophil infiltration and plantar tissue edema and suppressed the mRNA expression of pro-inflammatory molecules. In vitro, CPT suppressed inflammation triggered by lipopolysaccharide (LPS) in both RAW 264.7 and iBMDM cells, reducing expressions of inducible nitric oxide synthase (iNOS), superoxide, and pro-inflammatory molecules. A mechanistic study revealed that CPT exerted an anti-inflammatory activity by blocking the mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, as well as alleviating the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). Our results elucidated the pharmacodynamic material basis of C. jingzhao, and CPT can be a promising lead for alleviating inflammation and inflammatory pain.


Assuntos
Anti-Inflamatórios , Formaldeído , Inflamação , NF-kappa B , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , NF-kappa B/metabolismo , Camundongos , Fator 6 Associado a Receptor de TNF/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Células RAW 264.7 , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Dor/tratamento farmacológico , Dor/induzido quimicamente , Analgésicos/uso terapêutico , Analgésicos/farmacologia , Humanos , Edema/tratamento farmacológico , Edema/induzido quimicamente , Edema/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
3.
World Neurosurg ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032638

RESUMO

OBJECTIVE: To compare whether there is a difference in the efficacy of complete endoscopic microvascular decompression (EVD) and microscopic microvascular decompression (MVD) in patients with classical trigeminal neuralgia (CTN). METHODS: From January 2014 to January 2021, 297 CTN patients were assigned to the retrosigmoid approach EVD (138 cases) and the MVD groups (159 cases); to compare whether there are differences in the pain control rate, recurrence, complications of CTN patients between the 2operations, and separately predict the factors related to prognosis of both groups. RESULTS: There was no significant difference in painless rates at 1, 3, and 5 years after surgery (P = 0.356, P = 0.853, P = 1), and overall incidence of complications (P = 0.058) between the EVD and MVD groups. The EVD group had shorter surgical decompression duration than the MVD group (P < 0.001). The painless rate of patients with vertebrobasilar trigeminal neuralgia in the EVD group was higher than that in the MVD group, but the difference was not statistically significant (90% vs. 61.1%, P = 0.058). The independent risk factors associated with a good prognosis in the EVD group were a shorter course of the disease and severe neurovascular conflict, while severe neurovascular conflict is the only independent risk factor associated with a good prognosis in the MVD group. CONCLUSIONS: For CTN patients, compared with traditional MVD, EVD is also safe and effective and has the advantage of shorter decompression time.The predictive results of prognostic factors also suggest that CTN patients may benefit more from early surgical treatment.

4.
Adv Mater ; 36(32): e2403961, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830614

RESUMO

In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.

5.
Small ; : e2401767, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847563

RESUMO

Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.

6.
Mol Cell Biochem ; 479(7): 1707-1720, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822192

RESUMO

HOXC6 (Homeobox C6) and methyltransferase-like 3 (METTL3) have been shown to be involved in the progression of prostate cancer (PCa). However, whether HOXC6 performs oncogenic effects in PCa via METTL3-mediated N6-methyladenosine (m6A) modification is not yet reported. The Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, scratch, sphere formation assays were applied for cell growth, invasion, migration and stemness analyses. Glycolysis was evaluated by measuring glucose consumption, lactate generation and ATP/ADP ratio. The N6-methyladenine (m6A) modification profile was determined by RNA immunoprecipitation (Me-RIP) assay. The proteins that interact with PGK1 (phosphoglycerate kinase 1) were confirmed by Co-immunoprecipitation assay. Tumor formation experiments in mice were conducted for in vivo assay. PCa tissues and cells showed highly expressed HOXC6 and METTL3. Functionally, the silencing of HOXC6 or METTL3 suppresses PCa cell proliferation, invasion, migration, stemness, and glycolysis. Moreover, METTL3-induced HOXC6 m6A modification to stabilize its expression. In addition, the m6A reader IGF2BP2 directly recognized and bound to HOXC6 mRNA, and maintained its stability, and was involved in the regulation of HOXC6 expression by METTL3. Furthermore, IGF2BP2 knockdown impaired PCa cell proliferation, invasion, migration, stemness, and glycolysis by regulating HOXC6. Besides that HOXC6 interacted with the glycoytic enzyme PGK1 in PCa cells. In vivo assays further showed that METTL3 silencing reduced the expression of HOXC6 and PGK1, and impeded PCa growth. METTL3 promoted PCa progression by maintaining HOXC6 expression in an m6A-IGF2BP2-dependent mechanism.


Assuntos
Adenosina , Proteínas de Homeodomínio , Metiltransferases , Neoplasias da Próstata , Proteínas de Ligação a RNA , Metiltransferases/metabolismo , Metiltransferases/genética , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Animais , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Quinase/genética , Linhagem Celular Tumoral , Glicólise , Movimento Celular , Camundongos Nus
7.
Phys Rev Lett ; 132(19): 197202, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804947

RESUMO

The higher-order topological phases have attracted intense attention in the past years, which reveals various intriguing topological properties. Meanwhile, the enrichment of group symmetries with projective symmetry algebras redefines the fundamentals of topological matter and makes Stiefel-Whitney (SW) classes in classical wave systems possible. Here, we report the experimental realization of higher-order topological nodal loop semimetal in an acoustic system and obtain the inherent SW topological invariants. In stark contrast to higher-order topological semimetals relating to complex vector bundles, the hinge and surface states in the SW topological phase are protected by two distinctive SW topological charges relevant to real vector bundles. Our findings push forward the studies of SW class topology in classical wave systems, which also show possibilities in robust high-Q-resonance-based sensing and energy harvesting.

8.
Ultrasonics ; 141: 107338, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723293

RESUMO

Recently, the moiré pattern has attracted lots of attention by superimposing two planar structures of regular geometries, such as two sets of metasurfaces or gratings. Here, we show the experimental investigation of acoustic moiré effect by using twisted bilayer gratings (i.e., one grating twisted with respect to the other). We observed the guided resonance that occurred when the incident ultrasound beam was coupled with the guiding modes in a meta-grating, significantly influencing the reflection and transmission. Tunable guided resonances from the moiré effect with complete ultrasound reflection at different frequencies were further demonstrated in experiments. Combining the measurements of transmission spectra and the Fast Fourier Transform analyses, we reveal the guided resonance frequencies of moiré ultrasonic metasurface can be effectively controlled by adjusting the twisting angle of the bilayer gratings. Our results can be explained in a simplified model based on the band folding theory, providing a reliable prediction on the precise control of ultrasound reflection via the twisting angle adjustment. Our work extends the moiré metasurface from optics into acoustics, which shows more possibilities for the ultrasound beam engineering from the moiré effect and enables the exploration of functional acoustic devices for ultrasound imaging, treatment and diagnosis.

9.
Sci Adv ; 10(16): eadn1746, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640240

RESUMO

Phase modulation has scarcely been mentioned in diffusive physical systems because the diffusion process does not carry the momentum like waves. Recently, non-Hermitian physics provides a unique perspective for understanding diffusion and shows prospects in thermal phase regulation, exemplified by the discovery of anti-parity-time (APT) symmetry in diffusive systems. However, precise control of thermal phase remains elusive hitherto and can hardly be realized, due to the phase oscillations. Here we construct the PT-symmetric diffusive systems to achieve the complete suppression of thermal phase oscillation. The real coupling of diffusive fields is readily established through a strong convective background, and the decay-rate detuning is enabled by thermal metamaterial design. We observe the phase transition of PT symmetry breaking with the symmetry-determined amplitude and phase regulation of coupled temperature fields. Our work shows the existence of PT symmetry in dissipative energy exchanges and provides unique approaches for harnessing the mass transfer of particles, wave dynamics in strongly scattering systems, and thermal conduction.

10.
Int Nurs Rev ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477788

RESUMO

AIM: To evaluate the mediating roles of occupational resilience and the moderationg role of perceived organizational support in the relationship between career calling and nurse burnout. BACKGROUND: Burnout is a frequent and serious problem in the field of nursing, and it poses a serious threat to both nurses' health and patient safety. Although many studies have described the links between burnout, career calling, and occupational resilience, little is known about the actual mechanisms between career calling and nurse burnout. METHODS: A cross-sectional study of 615 nurses in China was conducted using a convenience sampling method. The data were analyzed using descriptive statistics and Pearson correlation analysis. Hypotheses were tested using structural equation models and bootstrapping methods. STROBE guidelines were followed. RESULTS: Career calling was found to be negatively associated with nurse burnout, and occupational resilience mediated the relationship between career calling and burnout. Additionally, perceived organizational support was found to play a moderating role in the relationship between occupational resilience and burnout. CONCLUSION: Career calling can reduce burnout by increasing nurses' levels of occupational resilience, and perceived organizational support moderates this mechanism. Hence, policies focused on encouraging and sustaining career calling should be provided by nurse managers in order to enhance stress resistance and reduce burnout.

11.
Sci Bull (Beijing) ; 69(9): 1228-1236, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503653

RESUMO

The paradigm shift of Hermitian systems into the non-Hermitian regime profoundly modifies inherent property of the topological systems, leading to various unprecedented effects such as the non-Hermitian skin effect (NHSE). In the past decade, the NHSE has been demonstrated in quantum, optical and acoustic systems. Beside those wave systems, the NHSE in diffusive systems has not yet been observed, despite recent abundant advances in the study of topological thermal diffusion. In this work, we design a thermal diffusion lattice based on a modified Su-Schrieffer-Heeger model and demonstrate the diffusive NHSE. In the proposed model, the asymmetric temperature field coupling inside each unit cell can be judiciously realized by appropriate configurations of structural parameters. We find that the temperature fields trend to concentrate toward the target boundary which is robust against initial excitation conditions. We thus experimentally demonstrated the NHSE in thermal diffusion and verified its robustness against various defects. Our work provides a platform for exploration of non-Hermitian physics in the diffusive systems, which has important applications in efficient heat collection, highly sensitive thermal sensing and others.

12.
Zhongguo Zhong Yao Za Zhi ; 49(2): 294-303, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403305

RESUMO

Lung cancer is the leading cause of cancer death, and its effective treatment is a difficult medical problem. Lung cancer belongs to the traditional Chinese medicine(TCM) disease categories of lung accumulation, lung amassment, and overstrain cough. Rich theoretical basis and practical experience have been accumulated in the TCM treatment of lung cancer. Astragali Radix is one of the representatives of Qi-tonifying drugs. It mainly treat the lung cancer with the syndrome of Qi deficiency and pathogen stagnation, following the principle of reinforcing healthy Qi and eliminating patgogenic Qi. Astragali Radix exerts a variety of pharmacological activities in the treatment of lung cancer, including inhibiting tumor cell proliferation and promoting tumor cell apoptosis, inhibiting tumor invasion and migration, regulating the tumor microenvironment, suppressing tumor angiogenesis, modulating autophagy, inducing macrophage polarization, enhancing immunity, inhibiting immune escape, and reversing cisplatin resistance. The active ingredients of Astragali Radix in treating lung cancer include polysaccharides, saponins, and flavonoids. This study reviewed the pharmacological activities and active ingredients of Astragali Radix in the treatment of lung cancer, providing a basis for the development and utilization of Astragali Radix resources and active ingredients and the research and development of anti-tumor drugs.


Assuntos
Astrágalo , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Medicina Tradicional Chinesa , Raízes de Plantas , Microambiente Tumoral
13.
Nat Commun ; 15(1): 1478, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368404

RESUMO

For classical waves, phase matching is vital for enabling efficient energy transfer in many scenarios, such as waveguide coupling and nonlinear optical frequency conversion. Here, we propose a temporal quasi-phase matching method and realize robust and complete acoustical energy transfer between arbitrarily detuned cavities. In a set of three cavities, A, B, and C, the time-varying coupling is established between adjacent elements. Analogy to the concept of stimulated Raman adiabatic passage, amplitudes of the two couplings are modulated as time-delayed Gaussian functions, and the couplings' signs are periodically flipped to eliminate temporal phase mismatching. As a result, robust and complete acoustic energy transfer from A to C is achieved. The non-reciprocal frequency conversion properties of our design are demonstrated. Our research takes a pivotal step towards expanding wave steering through time-dependent modulations and is promising to extend the frequency conversion based on state evolution in various linear Hermitian systems to nonlinear and non-Hermitian regimes.

14.
Adv Mater ; 36(23): e2312421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38386009

RESUMO

The discovery of higher-order topological insulator metamaterials, in analogy with their condensed-matter counterparts, has enabled various breakthroughs in photonics, mechanics, and acoustics. A common way of inducing higher-order topological wave phenomena is through pseudo-spins, which mimic the electron spins as a symmetry-breaking degree of freedom. Here, this work exploits degenerate orbitals in acoustic resonant cavities to demonstrate versatile, orbital-selective, higher-order topological corner states. Type-II corner states are theoretically investigated and experimentally demonstrated based on tailored orbital interactions, without the need for long-range hoppings that has so far served as a key ingredient for Type-II corner states in single-orbital systems. Due to the orthogonal nature of the degenerate p orbitals, this work also introduces a universal strategy to realize orbital-dependent edge modes, featuring high-Q edge states identified in bulk bands. These findings provide an understanding of the interplay between acoustic orbitals and topology, shedding light on orbital-related topological wave physics, as well as its applications for acoustic sensing and trapping.

15.
BMC Cardiovasc Disord ; 24(1): 129, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424525

RESUMO

PURPOSE: This study was aimed to identify the risk factors that influence the mortality risk in patients with acute aortic dissection (AAD) within one year after discharge, and aimed to construct a predictive model for assessing mortality risk. METHODS: The study involved 320 adult patients obtained from the Medical Information Mart for Intensive Care (MIMIC) database. Logistic regression analysis was conducted to identify potential risk factors associated with mortality in AAD patients within one year after discharge and to develop a predictive model. The performance of the predictive model was assessed using the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). To further validate the findings, patient data from the First Affiliated Hospital of Guangxi Medical University (157 patients) were analyzed. RESULTS: Univariate and multivariate logistic regression analyses revealed that gender, length of hospital stay, highest blood urea nitrogen (BUN_max), use of adrenaline, and use of amiodarone were significant risk factors for mortality within one year after discharge (p < 0.05). The constructed model exhibited a consistency index (C-index) and an area under the ROC curve of 0.738. The calibration curve and DCA demonstrated that these indicators had a good degree of agreement and utility. The external validation results of the model also indicated good predictability (AUC = 0.700, p < 0.05). CONCLUSION: The personalized scoring prediction model constructed by gender, length of hospital stays, BUN_max levels, as well as the use of adrenaline and amiodarone, can effectively identify AAD patients with high mortality risk within one year after discharge.


Assuntos
Amiodarona , Dissecção Aórtica , Adulto , Humanos , Estudos Transversais , Alta do Paciente , China/epidemiologia , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/terapia , Epinefrina , Fatores de Risco , Estudos Retrospectivos
16.
World J Gastrointest Oncol ; 16(1): 61-78, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38292845

RESUMO

BACKGROUND: Over the years, programmed cell death-1 (PD-1) inhibitors have been routinely used for hepatocellular carcinoma (HCC) treatment and yielded improved survival outcomes. Nonetheless, significant heterogeneity surrounds the outcomes of most studies. Therefore, it is critical to search for biomarkers that predict the efficacy of PD-1 inhibitors in patients with HCC. AIM: To investigate the role of the C-reactive protein to albumin ratio (CAR) in evaluating the efficacy of PD-1 inhibitors for HCC. METHODS: The clinical data of 160 patients with HCC treated with PD-1 inhibitors from January 2018 to November 2022 at the First Affiliated Hospital of Guangxi Medical University were retrospectively analyzed. RESULTS: The optimal cut-off value for CAR based on progression-free survival (PFS) was determined to be 1.20 using x-tile software. Cox proportional risk model was used to determine the factors affecting prognosis. Eastern Cooperative Oncology Group performance status [hazard ratio (HR) = 1.754, 95% confidence interval (95%CI) = 1.045-2.944, P = 0.033], CAR (HR = 2.118, 95%CI = 1.057-4.243, P = 0.034) and tumor number (HR = 2.932, 95%CI = 1.246-6.897, P = 0.014) were independent prognostic factors for overall survival. CAR (HR = 2.730, 95%CI = 1.502-4.961, P = 0.001), tumor number (HR = 1.584, 95%CI = 1.003-2.500, P = 0.048) and neutrophil to lymphocyte ratio (HR = 1.120, 95%CI = 1.022-1.228, P = 0.015) were independent prognostic factors for PFS. Two nomograms were constructed based on independent prognostic factors. The C-index index and calibration plots confirmed that the nomogram is a reliable risk prediction tool. The ROC curve and decision curve analysis confirmed that the nomogram has a good predictive effect as well as a net clinical benefit. CONCLUSION: Overall, we reveal that the CAR is a potential predictor of short- and long-term prognosis in patients with HCC treated with PD-1 inhibitors. If further verified, CAR-based nomogram may increase the number of markers that predict individualized prognosis.

17.
Adv Mater ; 36(11): e2312125, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052233

RESUMO

Twisted bilayer graphene (TBG) generates significant attention in the fundamental research of 2D materials due to its distinct twist-angle-dependent properties. Exploring the efficient production of TBG with a wide range of twist angles stands as one of the major frontiers in moiré materials. Here, the local space-confined chemical vapor deposition growth technique for high-quality single-crystal TBG with twist angles ranging from 0° to 30° on liquid copper substrates is reported. The clean surface, pristine interface, high crystallinity, and thermal stability of TBG are verified by using comprehensive characterization techniques including optical microscopy, electron microscopy, and secondary-ion mass spectrometry. The proportion of TBG in bilayer graphene reaches as high as 89%. In addition, the stacking structure and growth mechanism of TBG are investigated, revealing that the second graphene layer develops beneath the first one. A series of comparative experiments illustrates that the liquid copper surface, with its excellent fluidity, promotes the growth of TBG. Electrical measurements show the twist-angle-dependent electronic properties of as-grown TBG, achieving a room-temperature carrier mobility of 26640 cm2 V-1 s-1 . This work provides an approach for the in situ preparation of 2D twisted materials and facilitates the application of TBG in the fields of electronics.

18.
Small ; 20(22): e2310002, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109068

RESUMO

2D Ruddlesden-Popper phase layered perovskites (RPLPs) hold great promise for optoelectronic applications. In this study, a series of high-performance heterojunction phototransistors (HPTs) based on RPLPs with different organic spacer cations (namely butylammonium (BA+), cyclohexylammonium (CyHA+), phenethylammonium (PEA+), p-fluorophenylethylammonium (p-F-PEA+), and 2-thiophenethylammonium (2-ThEA+)) are fabricated successfully, in which high-mobility organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene is adopted to form type II heterojunction channels with RPLPs. The 2-ThEA+-RPLP-based HPTs show the highest photosensitivity of 3.18 × 107 and the best detectivity of 9.00 × 1018 Jones, while the p-F-PEA+-RPLP-based ones exhibit the highest photoresponsivity of 5.51 × 106 A W-1 and external quantum efficiency of 1.32 × 109%, all of which are among the highest reported values to date. These heterojunction systems also mimicked several optically controllable fundamental characteristics of biological synapses, including excitatory postsynaptic current, paired-pulse facilitation, and the transition from short-term memory to long-term memory states. The device based on 2-ThEA+-RPLP film shows an ultra-high PPF index of 234%. Moreover, spacer engineering brought fine-tuned thin film microstructures and efficient charge transport/transfer, which contributes to the superior photodetection performance and synaptic functions of these RPLP-based HPTs. In-depth structure-property correlations between the organic spacer cations/RPLPs and thin film microstructure/device performance are systematically investigated.

19.
Nat Commun ; 14(1): 8162, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071337

RESUMO

Topological phases of matter have attracted significant attention in recent years, due to the unusual robustness of their response to defects and disorder. Various research efforts have been exploring classical and quantum topological wave phenomena in engineered materials, in which different degrees of freedom (DoFs) - for the most part based on broken crystal symmetries associated with pseudo-spins - induce synthetic gauge fields that support topological phases and unveil distinct forms of wave propagation. However, spin is not the only viable option to induce topological effects. Intrinsic orbital DoFs in spinless systems may offer a powerful alternative platform, mostly unexplored to date. Here we reveal orbital-selective wave-matter interactions in acoustic systems supporting multiple orbital DoFs, and report the experimental demonstration of disorder-immune orbital-induced topological edge states in a zigzag acoustic 1D spinless lattice. This work expands the study of topological phases based on orbitals, paving the way to explore other orbital-dependent phenomena in spinless systems.

20.
Small ; : e2308019, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057125

RESUMO

Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA