Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558467

RESUMO

Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.


Assuntos
Arachis , Plântula , Arachis/genética , Plântula/genética , Cloreto de Sódio , Multiômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542283

RESUMO

The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress. Our results revealed significant variations in seed germination-related traits, particularly with higher GSL and EA, which exhibited higher germination % (G%) and lower mean germination time (MGT) under drought stress conditions. Moreover, osmoregulation, enzymatic system and hormonal regulation were improved in high GSL and high EA (HGHE) versus low GSL and low EA (LGLE) seeds, indicating the essential protective role of GSL and EA during the germination process in response to drought stress. The transcriptional regulation mechanism for coordinating GSL-EA-related pathways in response to drought stress during seed imbibition was found to involve the differential expression of sugar metabolism-, antioxidant-, and hormone-related genes with higher enrichment in HGHE compared to LGLE seeds. GO enrichment analysis showed higher variations in transcription regulator activity and DNA-binding transcription factors, as well as ATP and microtubule motor activity in GSL-EA-related pathways. Furthermore, KEGG analysis identified cellular processes, environmental information processing, and metabolism categories, with varied gene participation between GSL, EA and GSL-EA-related pathways. For further clarification, QY7 (LGLE) seeds were primed with different concentrations of GSL and EA under drought stress conditions. The results showed that 200 µmol/L of GSL and 400 µmol/L of EA significantly improved G%, MGT, and seedling fresh weight, besides regulating stress and fatty acid responsive genes during the seed germination process under drought stress conditions. Conclusively, exogenous application of GSL and EA is considered a promising method for enhancing the drought tolerance of LGLE seeds. Furthermore, the current investigation could provide a theoretical basis of GSL and EA roles and their underlying mechanisms in stress tolerance during the germination process.


Assuntos
Brassica napus , Brassica rapa , Ácidos Erúcicos , Germinação/genética , Brassica napus/genética , Glucosinolatos/metabolismo , Secas , Sementes/genética , Sementes/metabolismo , Brassica rapa/genética , Perfilação da Expressão Gênica
3.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542340

RESUMO

Auxin plays a crucial role in regulating root growth and development, and its distribution pattern under environmental stimuli significantly influences root plasticity. Under K deficiency, the interaction between K+ transporters and auxin can modulate root development. This study compared the differences in root morphology and physiological mechanisms of the low-K-tolerant maize inbred line 90-21-3 and K-sensitive maize inbred line D937 under K-deficiency (K+ = 0.2 mM) with exogenous NAA (1-naphthaleneacetic acid, NAA = 0.01 mM) treatment. Root systems of 90-21-3 exhibited higher K+ absorption efficiency. Conversely, D937 seedling roots demonstrated greater plasticity and higher K+ content. In-depth analysis through transcriptomics and metabolomics revealed that 90-21-3 and D937 seedling roots showed differential responses to exogenous NAA under K-deficiency. In 90-21-3, upregulation of the expression of K+ absorption and transport-related proteins (proton-exporting ATPase and potassium transporter) and the enrichment of antioxidant-related functional genes were observed. In D937, exogenous NAA promoted the responses of genes related to intercellular ethylene and cation transport to K-deficiency. Differential metabolite enrichment analysis primarily revealed significant enrichment in flavonoid biosynthesis, tryptophan metabolism, and hormone signaling pathways. Integrated transcriptomic and metabolomic analyses revealed that phenylpropanoid biosynthesis is a crucial pathway, with core genes (related to peroxidase enzyme) and core metabolites upregulated in 90-21-3. The findings suggest that under K-deficiency, exogenous NAA induces substantial changes in maize roots, with the phenylpropanoid biosynthesis pathway playing a crucial role in the maize root's response to exogenous NAA regulation under K-deficiency.


Assuntos
Deficiência de Potássio , Plântula , Plântula/genética , Plântula/metabolismo , Zea mays/metabolismo , Deficiência de Potássio/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Genomics ; 116(3): 110835, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521201

RESUMO

Pod length (PL) is one of the major traits determining pod size and yield of peanut. Discovering the quantitative trait loci (QTL) and identifying candidate genes associated with PL are essential for breeding high-yield peanut. In this study, quantitative trait loci sequencing (QTL-seq) was performed using the F2 population constructed by a short-pod variety Tifrunner (Tif) and a long-pod line Lps, and a 0.77 Mb genomic region on chromosome 07 was identified as the candidate region for PL. Then, the candidate region was narrowed to a 265.93 kb region by traditional QTL approach. RNA-seq analysis showed that there were four differentially expressed genes (DEGs) in the candidate region, among which Arahy.PF2L6F (AhCDC48) and Arahy.P4LK2T (AhTAA1) were speculated to be PL-related candidate genes. These results were informative for the elucidation of the underlying regulatory mechanism in peanut pod length and would facilitate further identification of valuable target genes.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , RNA-Seq , Genes de Plantas
5.
PeerJ ; 12: e16907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344295

RESUMO

Intercropping is an efficient land use and sustainable agricultural practice widely adopted worldwide. However, how intercropping influences the structure and function of soil bacterial communities is not fully understood. Here, the effects of five cropping systems (sole sorghum, sole millet, sole peanut, sorghum/peanut intercropping, and millet/peanut intercropping) on soil bacterial community structure and function were investigated using Illumina MiSeq sequencing. The results showed that integrating peanut into intercropping systems increased soil available nitrogen (AN) and total nitrogen (TN) content. The alpha diversity index, including Shannon and Chao1 indices, did not differ between the five cropping systems. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) illustrated a distinct separation in soil microbial communities among five cropping systems. Bacterial phyla, including Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, were dominant across all cropping systems. Sorghum/peanut intercropping enhanced the relative abundance of phyla Actinobacteriota and Chloroflexi compared to the corresponding monocultures. Millet/peanut intercropping increased the relative abundance of Proteobacteria, Acidobacteriota, and Nitrospirota. The redundancy analysis (RDA) indicated that bacterial community structures were primarily shaped by soil organic carbon (SOC). The land equivalent ratio (LER) values for the two intercropping systems were all greater than one. Partial least squares path modeling analysis (PLS-PM) showed that soil bacterial community had a direct effect on yield and indirectly affected yield by altering soil properties. Our findings demonstrated that different intercropping systems formed different bacterial community structures despite sharing the same climate, reflecting changes in soil ecosystems caused by interspecific interactions. These results will provide a theoretical basis for understanding the microbial communities of peanut-based intercropping and guide agricultural practice.


Assuntos
Chloroflexi , Microbiota , Solo/química , Arachis/microbiologia , Carbono , Microbiologia do Solo , Bactérias/genética , Acidobacteria , Proteobactérias , Nitrogênio
6.
Front Plant Sci ; 14: 1269200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078104

RESUMO

Introduction: The TGA transcription factors, plays a crucial role in regulating gene expression. In cultivated peanut (Arachis hypogaea), which faces abiotic stress challenges, understanding the role of TGAs is important. Methods: In this study, we conducted a comprehensive in analysis of the TGA gene family in peanut to elucidate their regulatory mechanisms and expression patterns under abiotic stress and hormone treatments. Furthermore, functional studies on the representative AhTGA gene in peanut cultivars were conducted using transgenic Arabidopsis and soybean hair roots. Results: The genome-wide analysis revealed that a total of 20 AhTGA genes were identified and classified into five subfamilies. Collinearity analysis revealed that AhTGA genes lack tandem duplication, and their amplification in the cultivated peanut genome primarily relies on the whole-genome duplication of the diploid wild peanut to form tetraploid cultivated peanut, as well as segment duplication between the A and B subgenomes. Promoter and Protein-protein interaction analysis identified a wide range of cis-acting elements and potential interacting proteins associated with growth and development, hormones, and stress responses. Expression patterns of AhTGA genes in different tissues, under abiotic stress conditions for low temperature and drought, and in response to hormonal stimuli revealed that seven AhTGA genes from groups I (AhTGA04, AhTGA14 and AhTGA20) and II (AhTGA07, AhTGA11, AhTGA16 and AhTGA18) are involved in the response to abiotic stress and hormonal stimuli. The hormone treatment results indicate that these AhTGA genes primarily respond to the regulation of jasmonic acid and salicylic acid. Overexpressing AhTGA11 in Arabidopsis enhances resistance to cold and drought stress by increasing antioxidant activities and altering endogenous hormone levels, particularly ABA, SA and JA. Discussion: The AhTGA genes plays a crucial role in hormone regulation and stress response during peanut growth and development. The findings provide insights into peanut's abiotic stress tolerance mechanisms and pave the way for future functional studies.

7.
Front Plant Sci ; 14: 1266969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078119

RESUMO

In maize/peanut intercropping systems, shade from maize is a major factor in peanut yield reduction. Reasonable redundant organ removal of maize plants could alleviate this problem and improve intercropped peanut yields. We studied the influences of organ removal of maize on peanut canopy photosynthetic capacity, dry matter accumulation and yield in maize/peanut intercropping systems in 2021 and 2022. Five organ-removal treatments were performed on maize plants to ameliorate the light environments in the peanut canopy. Treatments consisted of removal of the tassel only (T1), the tassel with top two leaves (T2), the tassel with top four leaves (T3), the tassel with top six leaves (T4), the leaves below the second leaf below the ear (T5), with no removal as control (T0). The results showed that organ-removal treatment (T4) significantly improved the photosynthetically active radiation (PAR, 49.5%) of intercropped peanut canopy. It improved dry matter accumulation by increasing the canopy photosynthetic capacity (canopy apparent photosynthetic rate (CAP), leaf area index (LAI), and specific leaf area (SLA)), ultimately contributing to peanut yield by increasing pod number per plant. Also, the above results were verified by structural equation modeling. The yield of intercropped peanut reached the highest value at T4. At the level of intercropping systems, the land equivalent ratio (LER) peaked at T2 (1.56, averaged over the two years), suggesting that peanut and maize can coexist more harmoniously under T2 treatment. The T2 treatment increased peanut yield by an average of 7.1% over two years and increased maize yield by 4.7% compared to the T0 treatment. The present study suggests that this may be an effective cultivation measure to mitigate intercropping shade stress in terms of adaptive changes in intercropped peanut under maize organ removal conditions, providing a theoretical basis for intercropped peanut yield increase.

8.
Huan Jing Ke Xue ; 44(8): 4575-4584, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694651

RESUMO

The objective of this study was to explore the microecological variability in farmland soil fertility in response to millet-peanut intercropping patterns by clarifying the effects of millet-peanut 4:4 intercropping on soil bacterial community structure and its diversity, as well as to provide a reference basis for promoting ecological restoration and arable land quality improvement in the lower Yellow River farmland. The Illumina MiSeq high-throughput sequencing technology and QIIME 2 platform were used to analyze the differences in bacterial community composition and their influencing factors in five soils[sole millet (SM), sole peanut (SP), intercropping millet (IM), intercropping peanut (IP), and millet-peanut intercropping (MP)] and to predict their ecological functions. The results showed that the α-diversity of intercropping soil bacterial communities differed from that of monocropping, though not significantly, whereas the ß-diversity was significantly different (P<0.05). A total of 7081 ASVs were obtained from all soil samples, classified into 34 phyla, 109 orders, 256 class, 396 families, 710 genera, and 1409 species, of which 727 ASVs were shared, accounting for 24.5% to 27.8% in five soil species. The bacterial communities of millet-peanut intercropping and its monocropping soils were similar in phylum composition but varied in relative abundance. All five soils were dominated by the Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, with a relative abundance of 79.40%-81.33%. Soil organic carbon and alkaline nitrogen were the most important factors causing differences in the structures of the five soil bacterial communities at the phylum and genus levels, respectively. The PICRUSt functional prediction revealed that the relative abundance of primary functional metabolism was the largest (78.9%-79.3%), and the relative abundance of secondary functional exogenous biodegradation and metabolism fluctuated the most (CV=3.782%). In terms of the BugBase phenotype, the relative abundance of oxidative stress-tolerant bacteria increased in intercropping millet or peanut soils compared to that in the corresponding monocultures and significantly increased in intercropping millet soils compared to that in sole millet (P<0.05). Oxidative stress-tolerant, Gram-positive, and aerobic phenotypes were highly significantly positively correlated with each other (P<0.01), and all three showed highly significant negative correlations with potential pathogenicity and Gram-negative and anaerobic phenotypes (P<0.01). This showed that millet-peanut intercropping resulted in differences in soil bacterial community diversity, abundance, and metabolic functions and the possibility of reducing the occurrence of potential soil diseases. It can be used to regulate the soil microbiological environment to promote ecological restoration and sustainable development of farmland in the lower Yellow River.


Assuntos
Arachis , Milhetes , Humanos , Carbono , Fazendas , Rios , Solo
9.
Front Plant Sci ; 14: 1135580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521911

RESUMO

Changes in the canopy microclimate in intercropping systems, particularly in the light environment, have important effects on the physiological characteristics of photosynthesis and yield of crops. Although different row ratio configurations and strip widths of dwarf crops in intercropping systems have important effects on canopy microclimate, little information is available on the effects of intercropping on chlorophyll synthesis and photosynthetic physiological properties of dwarf crops. A 2-year field experiment was conducted in 2019 and 2020, with five treatments: sole maize (SM), sole peanut (SP), four rows of maize intercropping with eight rows of peanut (M4P8), four rows of maize intercropping with four rows of peanut (M4P4), and four rows of maize intercropping with two rows of peanut (M4P2). The results showed that the light transmittance [photosynthetically active radiation (PAR)], photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) of intercropped peanut canopy were reduced, while the intercellular carbon dioxide concentration (Ci) was increased, compared with SP. In particular, the M4P8 pattern Pn (2-year mean) was reduced by 5.68%, 5.33%, and 5.30%; Tr was reduced by 7.41%, 5.45%, and 5.95%; and Gs was reduced by 8.20%, 6.88%, and 6.46%; and Ci increased by 11.95%, 8.06%, and 9.61% compared to SP, at the flowering needle stage, pod stage, and maturity, respectively. M4P8 improves the content of chlorophyll synthesis precursor and conversion efficiency, which promotes the utilization efficiency of light energy. However, it was significantly reduced in M4P2 and M4P4 treatment. The dry matter accumulation and pod yield of peanut in M4P8 treatment decreased, but the proportion of dry matter distribution in the late growth period was more transferred to pods. The full pod number decreases as the peanut row ratio decreases and increases with year, but there is no significant difference between years. M4P8 has the highest yield and land use efficiency and can be used as a reference row ratio configuration for maize-peanut intercropping to obtain relatively high yield benefits.

10.
BMC Plant Biol ; 23(1): 371, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37491223

RESUMO

BACKGROUND: Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS: In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS: It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.


Assuntos
Arachis , Reguladores de Crescimento de Plantas , Arachis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo
11.
Front Plant Sci ; 14: 1102200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743478

RESUMO

Abiotic stresses such as cold, drought and salinity are the key environmental factors that limit the yield and quality of oil crop peanut. Phospholipase Ds (PLDs) are crucial hydrolyzing enzymes involved in lipid mediated signaling and have valuable functions in plant growth, development and stress tolerance. Here, 22, 22 and 46 PLD genes were identified in Arachis duranensis, Arachis ipaensis and Arachis hypogaea, respectively, and divided into α, ß, γ, δ, ε, ζ and φ isoforms. Phylogenetic relationships, structural domains and molecular evolution proved the conservation of PLDs between allotetraploid peanut and its diploid progenitors. Almost each A. hypogaea PLD except for AhPLDα6B had a corresponding homolog in A. duranensis and A. ipaensis genomes. The expansion of Arachis PLD gene families were mainly attributed to segmental and tandem duplications under strong purifying selection. Functionally, the most proteins interacting with AhPLDs were crucial components of lipid metabolic pathways, in which ahy-miR3510, ahy-miR3513-3p and ahy-miR3516 might be hub regulators. Furthermore, plenty of cis-regulatory elements involved in plant growth and development, hormones and stress responses were identified. The tissue-specific transcription profiling revealed the broad and unique expression patterns of AhPLDs in various developmental stages. The qRT-PCR analysis indicated that most AhPLDs could be induced by specific or multiple abiotic stresses. Especially, AhPLDα3A, AhPLDα5A, AhPLDß1A, AhPLDß2A and AhPLDδ4A were highly up-regulated under all three abiotic stresses, whereas AhPLDα9A was neither expressed in 22 peanut tissues nor induced by any abiotic stresses. This genome-wide study provides a systematic analysis of the Arachis PLD gene families and valuable information for further functional study of candidate AhPLDs in peanut growth and abiotic stress responses.

12.
Front Plant Sci ; 14: 1343402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312353

RESUMO

Introduction: Trehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited. Methods: This study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9's role in cold tolerance. Results: In the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes. Discussion: This comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance.

13.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362327

RESUMO

Pod size is one of the important factors affecting peanut yield. However, the metabolites relating to pod size and their biosynthesis regulatory mechanisms are still unclear. In the present study, two peanut varieties (Tif and Lps) with contrasting pod sizes were used for a comparative metabolome and transcriptome analysis. Developing peanut pods were sampled at 10, 20 and 30 days after pegging (DAP). A total of 720 metabolites were detected, most of which were lipids (20.3%), followed by phenolic acids (17.8%). There were 43, 64 and 99 metabolites identified as differentially accumulated metabolites (DAMs) at 10, 20 and 30 DAP, respectively, and flavonoids were the major DAMs between Tif and Lps at all three growth stages. Multi-omics analysis revealed that DAMs and DEGs (differentially expressed genes) were significantly enriched in the phenylpropanoid biosynthesis (ko00940) pathway, the main pathway of lignin biosynthesis, in each comparison group. The comparisons of the metabolites in the phenylpropanoid biosynthesis pathway accumulating in Tif and Lps at different growth stages revealed that the accumulation of p-coumaryl alcohol (H-monolignol) in Tif was significantly greater than that in Lps at 30 DAP. The differential expression of gene-LOC112771695, which is highly correlated with p-coumaryl alcohol and involved in the biosynthesis of monolignols, between Tif and Lps might explain the differential accumulation of p-coumaryl alcohol. The content of H-lignin in genetically diverse peanut varieties demonstrated that H-lignin content affected peanut pod size. Our findings would provide insights into the metabolic factors influencing peanut pod size and guidance for the genetic improvement of the peanut.


Assuntos
Arachis , Lignina , Arachis/metabolismo , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/metabolismo , Transcriptoma
14.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293287

RESUMO

Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in regulating flowering time and various developmental processes. Functions and expression patterns in cultivated peanuts (Arachis hypogaea L.) remain unknown. In this study, 33 PEBP genes in cultivated peanuts were identified and divided into four subgroups: FT, TFL, MFT and FT-like. Gene structure analysis showed that orthologs from A and B genomes in cultivated peanuts had highly similar structures, but some orthologous genes have subgenomic dominance. Gene collinearity and phylogenetic analysis explain that some PEBP genes play key roles in evolution. Cis-element analysis revealed that PEBP genes are mainly regulated by hormones, light signals and stress-related pathways. Multiple PEPB genes had different expression patterns between early and late-flowering genotypes. Further detection of its response to temperature and photoperiod revealed that PEBPs ArahyM2THPA, ArahyEM6VH3, Arahy4GAQ4U, ArahyIZ8FG5, ArahyG6F3P2, ArahyLUT2QN, ArahyDYRS20 and ArahyBBG51B were the key genes controlling the flowering response to different flowering time genotypes, photoperiods and temperature. This study laid the foundation for the functional study of the PEBP gene in cultivated peanuts and the adaptation of peanuts to different environments.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Arachis/genética , Arachis/metabolismo , Filogenia , Flores/metabolismo , Proteínas de Plantas/metabolismo , Genômica , Hormônios/metabolismo , Etanolaminas/metabolismo
15.
BMC Plant Biol ; 22(1): 460, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36162997

RESUMO

BACKGROUND: Drought stress has negative effects on plant growth and productivity. In this study, a comprehensive analysis of physiological responses and gene expression was performed. The responses and expressions were compared between drought-tolerant (DT) and drought-sensitive (DS) peanut varieties to investigate the regulatory mechanisms and hub genes involved in the impact of drought stress on culture. RESULTS: The drought-tolerant variety had robust antioxidative capacities with higher total antioxidant capacity and flavonoid contents, and it enhanced osmotic adjustment substance accumulation to adapt to drought conditions. KEGG analysis of differentially expressed genes demonstrated that photosynthesis was strongly affected by drought stress, especially in the drought-sensitive variety, which was consistent with the more severe suppression of photosynthesis. The hub genes in the key modules related to the drought response, including genes encoding protein kinase, E3 ubiquitin-protein ligase, potassium transporter, pentatricopeptide repeat-containing protein, and aspartic proteinase, were identified through a comprehensive combined analysis of genes and physiological traits using weighted gene co-expression network analysis. There were notably differentially expressed genes between the two varieties, suggesting the positive roles of these genes in peanut drought tolerance. CONCLUSION: A comprehensive analysis of physiological traits and relevant genes was conducted on peanuts with different drought tolerances. The findings revealed diverse drought-response mechanisms and identified candidate genes for further research.


Assuntos
Ácido Aspártico Proteases , Secas , Antioxidantes , Arachis/genética , Ácido Aspártico Proteases/genética , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Potássio , Proteínas Quinases/genética , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética
16.
Front Plant Sci ; 13: 957336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991432

RESUMO

Belowground interactions mediated by root exudates are critical for the productivity and efficiency of intercropping systems. Herein, we investigated the process of microbial community assembly in maize, peanuts, and shared rhizosphere soil as well as their regulatory mechanisms on root exudates under different planting patterns by combining metabolomic and metagenomic analyses. The results showed that the yield of intercropped maize increased significantly by 21.05% (2020) and 52.81% (2021), while the yield of intercropped peanut significantly decreased by 39.51% (2020) and 32.58% (2021). The nitrogen accumulation was significantly higher in the roots of the intercropped maize than in those of sole maize at 120 days after sowing, it increased by 129.16% (2020) and 151.93% (2021), respectively. The stems and leaves of intercropped peanut significantly decreased by 5.13 and 22.23% (2020) and 14.45 and 24.54% (2021), respectively. The root interaction had a significant effect on the content of ammonium nitrogen (NH4 +-N) as well as the activities of urease (UE), nitrate reductase (NR), protease (Pro), and dehydrogenase (DHO) in the rhizosphere soil. A combined network analysis showed that the content of NH4 +-N as well as the enzyme activities of UE, NR and Pro increased in the rhizosphere soil, resulting in cyanidin 3-sambubioside 5-glucoside and cyanidin 3-O-(6-Op-coumaroyl) glucoside-5-O-glucoside; shisonin were significantly up-regulated in the shared soil of intercropped maize and peanut, reshaped the bacterial community composition, and increased the relative abundance of Bradyrhizobium. These results indicate that interspecific root interactions improved the soil microenvironment, regulated the absorption and utilization of nitrogen nutrients, and provided a theoretical basis for high yield and sustainable development in the intercropping of maize and peanut.

17.
PeerJ ; 10: e13777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919403

RESUMO

Rotational strip intercropping (RSI) of cereals and legumes has been developed and widely carried out to alleviate continuous cropping obstacles, to control erosion and to improve field use efficiency. In this study, a four-year fixed-field experiment was carried out in northeast China with three treatments: continuous cropping of maize, continuous cropping of peanuts and rotational strip intercropping of maize and peanut. The results show that crop rotation improved the main-stem height, branch number, lateral branch length, and yield and quality of peanuts; the yield was the highest in 2018, when it was increased by 39.5%. RSI improved the contents of total N, available N, total P, available P, total K and available K; the content of available N was the highest in 2018, with an increase of 70%. Rhizosphere soil urease and catalase activities were significantly increased and were the highest in 2017, reaching 183.13% and 91.21%, respectively. According to a high-throughput sequencing analysis, the rhizosphere soil bacterial richness and specific OTUs decreased in peanut rhizosphere soil, while the fungal increased. There were differences in the bacterial and fungal community structures; specifically, the abundance of Acidobacteria and Planctomycetes increased among bacteria and the abundance of beneficial microorganisms such as Ascomycota increased among fungi. In conclusion, rotational strip intercropping of maize and peanut increased the yield and quality of peanuts and conducive to alleviating the obstacles facing the continuous cropping of peanuts. Among then, soil physicochemical properties, enzyme activity and microbial diversity were significantly affected the yield of peanut.


Assuntos
Microbiota , Solo , Solo/química , Arachis , Agricultura/métodos , Zea mays , Bactérias
18.
Front Plant Sci ; 13: 892055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481149

RESUMO

Maize (Zea mays) doubled haploid (DH) breeding is a technology that can efficiently generate inbred lines with homozygous genetic backgrounds. Haploids are usually produced through in vivo induction by haploid inducer lines in maize. Currently, two approaches are usually used to develop maize haploid inducer lines. One is through the conventional breeding improvement based on the Stock6 germplasm, and this strategy is extensively used to induce maternal haploids in commercial maize DH breeding. Another strategy, newly developed but less utilized so far, is by genetic manipulation of the Centromeric Histone3 (CENH3) in regular lines. However, whether both approaches can be combined to develop the haploid inducer line with higher maternal haploid induction rate (HIR) has not been reported. In this study, we manipulated the Stock6-derived inducer lines by overexpressing maize CENH3 fused with different fluorescent protein tags and found that the engineered Stock6-derived lines showed an obvious increase in the maternal HIR. Intriguingly, this above strategy could be further improved by substituting a tail-altered CENH3 for the full-length CENH3 in the tagged expression cassette, resulting in a maternal HIR up to 16.3% that was increased by ~6.1% than Stock6-derived lines control. These results suggested that integration of two in vivo haploid induction methods could rapidly and effectively improve the maternal HIRs of maize Stock6-derived inducer lines, and provided a potentially feasible solution for further optimizing the process of commercial maize DH breeding.

19.
Genomics ; 114(2): 110285, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124174

RESUMO

The unclear molecular mechanism by which peanuts adapt to chilling stress limits progress in molecular breeding for peanut chilling tolerance. Here, the physiological and transcriptional differences between two genotypes with contrasting tolerance under chilling stress were compared. The inhibition of photosynthesis mainly caused by stomatal factors was a common response of peanut seedlings to chilling stress. Chilling-tolerant genotypes could inhibit the accumulation of ROS to adapt to chilling stress, and enhanced activities of CAT and APX were major causes of lower H2O2 content. The results of a conjoint analysis of physiological indices and the RNA-Seq database by WGCNA indicated that the genes in key modules were significantly enriched in pathways related to the oxidation-reduction process. Hub genes encoding RLK, CAT, MYC4, AOS, GST, PP2C, UPL5 and ZFP8 were likely to positively regulate peanut chilling tolerance, but hub genes encoding PAO, NAC2 and NAC72 were likely to negatively regulate peanut chilling tolerance.


Assuntos
Arachis , Transcriptoma , Arachis/genética , Arachis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico/genética
20.
BMC Microbiol ; 22(1): 14, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996375

RESUMO

BACKGROUND: Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. RESULTS: The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. CONCLUSION: Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.


Assuntos
Agricultura/métodos , Arachis/crescimento & desenvolvimento , Microbiota , Nutrientes/metabolismo , Zea mays/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , China , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Enzimas/análise , Enzimas/metabolismo , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Nutrientes/análise , Rizosfera , Solo/química , Microbiologia do Solo , Zea mays/metabolismo , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA