Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17738-17762, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858948

RESUMO

Multi-directional polarized optical sensors are increasingly vital in passive remote sensing, deepening our understanding of global cloud properties. Nevertheless, uncertainty lingers on how these observations can contribute to our knowledge of cloud diversity. The variability in cloud PSD (Particle Size Distribution) significantly influences a wide array of cloud characteristics, while unidentified factors in RT (Radiative Transfer) may introduce errors into the cloud PSD retrieval algorithm. Therefore, establishing unified evaluation criteria for both optical device configuration and inversion methods is crucial. Our study, based on Bayesian theory and RT, assesses the information content of both cloud effective radius and effective variance retrieval, along with the key factors affecting their retrieval in multi-directional polarized observations, using the calculation of DFS (Degree of Freedom for Signals).We consider the process of solar incidence, cloud scattering, and sensor reception, and discuss the impact of various sensor configurations, cloud characteristics, and other components on the retrieval of cloud PSD. Correspondingly, we observed a 48% improvement in the information content of cloud PSD with the incorporation of multi-directional polarized measurements in the rainbow region. Cloud droplet concentration significantly influences inversion, but its PSD does not cause monotonic linear interference on information content. The blending of particle mixtures with different PSD has a significant negative impact on DFS. In cases where the AOD (Aerosol Optical Depth) is less than 0.5 and the COT (Cloud Optical Thickness) exceeds 5, the influence of aerosol and surface contributions on inversion can be neglected. Our findings would serve as a foundation for future instrument design improvements and enhancements to retrieval algorithms.

2.
J Virol ; 97(12): e0098823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038430

RESUMO

IMPORTANCE: Autophagy is a conserved degradation process that maintains cellular homeostasis and regulates native and adaptive immunity. Viruses have evolved diverse strategies to inhibit or activate autophagy for their benefit. The paper reveals that CSFV NS5A mediates the dissociation of PP2A from Beclin 1 and the association of PP2A with DAPK3 by interaction with PPP2R1A and DAPK3, PP2A dephosphorylates DAPK3 to activate its protein kinase activity, and activated DAPK3 phosphorylates Beclin 1 to trigger autophagy, indicating that NS5A activates autophagy via the PP2A-DAPK3-Beclin 1 axis. These data highlight a novel mechanism by which CSFV activates autophagy to favor its replication, thereby contributing to the development of antiviral strategies.


Assuntos
Autofagia , Vírus da Febre Suína Clássica , Peste Suína Clássica , Proteínas não Estruturais Virais , Animais , Proteína Beclina-1/metabolismo , Peste Suína Clássica/imunologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/fisiologia , Suínos , Replicação Viral , Proteínas não Estruturais Virais/metabolismo
3.
Virol Sin ; 38(6): 900-910, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714433

RESUMO

The NS5A non-structural protein of classical swine fever virus (CSFV) is a multifunctional protein involved in viral genomic replication, protein translation, assembly of infectious virus particles, and regulation of cellular signaling pathways. Previous report showed that NS5A inhibited nuclear factor kappa B (NF-κB) signaling induced by poly(I:C); however, the mechanism involved has not been elucidated. Here, we reported that NS5A directly interacted with NF-κB essential modulator (NEMO), a regulatory subunit of the IκB kinase (IKK) complex, to inhibit the NF-κB signaling pathway. Further investigations showed that the zinc finger domain of NEMO and the aa 126-250 segment of NS5A are essential for the interaction between NEMO and NS5A. Mechanistic analysis revealed that NS5A mediated the proteasomal degradation of NEMO. Ubiquitination assay showed that NS5A induced the K27-linked but not the K48-linked polyubiquitination of NEMO for proteasomal degradation. In addition, NS5A blocked the K63-linked polyubiquitination of NEMO, thus inhibiting IKK phosphorylation, IκBα degradation, and NF-κB activation. These findings revealed a novel mechanism by which CSFV inhibits host innate immunity, which might guide the drug design against CSFV in the future.


Assuntos
Vírus da Febre Suína Clássica , NF-kappa B , Animais , Suínos , NF-kappa B/metabolismo , Vírus da Febre Suína Clássica/metabolismo , Transdução de Sinais , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Imunidade Inata
4.
Stem Cells ; 34(10): 2501-2511, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27335219

RESUMO

Human mesenchymal stem cells (MSCs) hold great promise in cellular therapeutics for skeletal diseases but lack expression of E-selectin ligands that direct homing of blood-borne cells to bone marrow. Previously, we described a method to engineer E-selectin ligands on the MSC surface by exofucosylating cells with fucosyltransferase VI (FTVI) and its donor sugar, GDP-Fucose, enforcing transient surface expression of the potent E-selectin ligand HCELL with resultant enhanced osteotropism of intravenously administered cells. Here, we sought to determine whether E-selectin ligands created via FTVI-exofucosylation are distinct in identity and function to those created by FTVI expressed intracellularly. To this end, we introduced synthetic modified mRNA encoding FTVI (FUT6-modRNA) into human MSCs. FTVI-exofucosylation (i.e., extracellular fucosylation) and FUT6-modRNA transfection (i.e., intracellular fucosylation) produced similar peak increases in cell surface E-selectin ligand levels, and shear-based functional assays showed comparable increases in tethering/rolling on human endothelial cells expressing E-selectin. However, biochemical analyses revealed that intracellular fucosylation induced expression of both intracellular and cell surface E-selectin ligands and also induced a more sustained expression of E-selectin ligands compared to extracellular fucosylation. Notably, live imaging studies to assess homing of human MSC to mouse calvarium revealed more osteotropism following intravenous administration of intracellularly-fucosylated cells compared to extracellularly-fucosylated cells. This study represents the first direct analysis of E-selectin ligand expression programmed on human MSCs by FTVI-mediated intracellular versus extracellular fucosylation. The observed differential biologic effects of FTVI activity in these two contexts may yield new strategies for improving the efficacy of human MSCs in clinical applications. Stem Cells 2016;34:2501-2511.


Assuntos
Osso e Ossos/citologia , Movimento Celular , Selectina E/metabolismo , Fucose/metabolismo , Células-Tronco Mesenquimais/citologia , Engenharia Metabólica/métodos , Animais , Medula Óssea/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Espaço Extracelular/metabolismo , Extravasamento de Materiais Terapêuticos e Diagnósticos/patologia , Fucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Espaço Intracelular/metabolismo , Cinética , Ligantes , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Crânio/metabolismo , Transfecção , Transplante Heterólogo
5.
Methods Mol Biol ; 1229: 431-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25325970

RESUMO

Glycosaminoglycans (GAGs) are linear polysaccharides with repeating disaccharide units. GAGs include heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronan. All GAGs, except for hyaluronan, are usually sulfated. GAGs are polymerized by mono- or dual-specific glycosyltransferases and sulfated by various sulfotransferases. To further our understanding of GAG chain length regulation and synthesis of specific sulfation motifs on GAG chains, it is imperative to understand the kinetics of GAG synthetic enzymes. Here, nonradioactive colorimetric enzymatic assays are described for these glycosyltransferases and sulfotransferases. In both cases, the leaving nucleotides or nucleosides are hydrolyzed using specific phosphatases, and the released phosphate is subsequently detected using malachite reagents.


Assuntos
Ensaios Enzimáticos/métodos , Glicosaminoglicanos/biossíntese , Glicosiltransferases/metabolismo , Sulfotransferases/metabolismo , Animais , Humanos , Camundongos , Fosfatos/metabolismo , Radioatividade , Proteínas Recombinantes/metabolismo , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA