Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254440

RESUMO

Liver cells are the basic functional unit of the liver. However, repeated or sustained injury leads to structural disorders of liver lobules, proliferation of fibrous tissue and changes in structure, thus increasing scar tissue. Cellular fibrosis affects tissue stiffness, shear force, and other cellular mechanical forces. Mechanical force characteristics can serve as important indicators of cell damage and cirrhosis. Atomic force microscopy (AFM) has been widely used to study cell surface mechanics. However, characterization of the deep mechanical properties inside liver cells remains an underdeveloped field. In this work, cell nanoindentation was combined with finite element analysis to simulate and analyze the mechanical responses of liver cells at different depths in vitro and their internal responses and stress diffusion distributions after being subjected to normal stress. The sensitivities of the visco-hyperelastic parameters of the finite element model to the effects of the peak force and equilibrium force were compared. The force curves of alcohol-damaged liver cells at different depths were measured and compared with those of undamaged liver cells. The inverse analysis method was used to simulate the finite element model in vitro. Changes in the parameters of the cell model after injury were explored and analyzed, and their potential for characterizing hepatocellular injury and related treatments was evaluated. RESEARCH HIGHLIGHTS: This study aims to establish an in vitro hyperelastic model of liver cells and analyze the mechanical changes of cells in vitro. An analysis method combining finite element analysis model and nanoindentation was used to obtain the key parameters of the model. The multi-depth mechanical differences and internal structural changes of injured liver cells were analyzed.

2.
Heliyon ; 10(17): e37378, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296040

RESUMO

Background: Mitophagy selectively eliminates potentially cytotoxic and damaged mitochondria and effectively prevents excessive cytotoxicity from damaged mitochondria, thereby attenuating inflammatory and oxidative responses. However, the potential role of mitophagy in intervertebral disc degeneration remains to be elucidated. Methods: The GSVA method, two machine learning methods (SVM-RFE algorithm and random forest), the CIBERSORT and MCPcounter methods, as well as the consensus clustering method and the WGCNA algorithm were used to analyze the involvement of mitophagy in intervertebral disc degeneration, the diagnostic value of mitophagy-associated genes in intervertebral disc degeneration, and the infiltration of immune cells, and identify the gene modules that were closely related to mitophagy. Single-cell analysis was used to detect mitophagy scores and TOMM22 expression, and pseudo-temporal analysis was used to explore the function of TOMM22 in nucleus pulposus cells. In addition, TOMM22 expression was compared between human normal and degenerated intervertebral disc tissue samples by immunohistochemistry and PCR. Results: This study identified that the mitophagy pathway score was elevated in intervertebral disc degeneration compared with the normal condition. A strong link was present between mitophagy genes and immune cells, which may be used to typify intervertebral disc degeneration. The single-cell level showed that mitophagy-associated gene TOMM22 was highly expressed in medullary cells of the disease group. Further investigations indicated the upregulation of TOMM22 expression in late-stage nucleus pulposus cells and its role in cellular communication. In addition, human intervertebral disc tissue samples established that TOMM22 levels were higher in disc degeneration samples than in normal samples. Conclusions: Our findings revealed that mitophagy may be used in the diagnosis of intervertebral disc degeneration and its typing, and TOMM22 is a molecule in this regard and may act as a potential diagnostic marker in intervertebral disc degeneration.

3.
Microbiome ; 12(1): 156, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180084

RESUMO

BACKGROUND: Microbes colonizing each compartment of terrestrial plants are indispensable for maintaining crop health. Although corn stalk rot (CSR) is a severe disease affecting maize (Zea mays) worldwide, the mechanisms underlying host-microbe interactions across vertical compartments in maize plants, which exhibit heterogeneous CSR-resistance, remain largely uncharacterized. RESULTS: Here, we investigated the microbial communities associated with CSR-resistant and CSR-susceptible maize cultivars using multi-omics analysis coupled with experimental verification. Maize cultivars resistant to CSR reshaped the microbiota and recruited Bacillus species with three phenotypes against Fusarium graminearum including niche pre-emption, potential secretion of antimicrobial compounds, and no inhibition to alleviate pathogen stress. By inducing the expression of Tyrosine decarboxylase 1 (TYDC1), encoding an enzyme that catalyzes the production of tyramine and dopamine, Bacillus isolates that do not directly suppress pathogen infection induced the synthesis of berberine, an isoquinoline alkaloid that inhibits pathogen growth. These beneficial bacteria were recruited from the rhizosphere and transferred to the stems but not grains of the CSR-resistant plants. CONCLUSIONS: The current study offers insight into how maize plants respond to and interact with their microbiome and lays the foundation for preventing and treating soil-borne pathogens. Video Abstract.


Assuntos
Bacillus , Resistência à Doença , Fusarium , Microbiota , Doenças das Plantas , Zea mays , Zea mays/microbiologia , Zea mays/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Bacillus/metabolismo , Microbiologia do Solo , Rizosfera , Tirosina Descarboxilase/metabolismo , Tirosina Descarboxilase/genética , Interações entre Hospedeiro e Microrganismos , Tiramina/metabolismo
4.
BMC Oral Health ; 24(1): 906, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112961

RESUMO

BACKGROUND: Chronic nonspecific cheilitis is a complex condition characterized by persistent lip peeling and discomfort. This case report explores the clinical progression of a patient with history of tongue squamous cell carcinoma and subsequent Tislelizumab treatment, presenting with persistent lip peeling. CASE PRESENTATION: A patient with a history of tongue squamous cell carcinoma (T2N0M0), treated with chemotherapy, surgery, and Tislelizumab, presented with six months of persistent lip peeling. Clinical examination revealed distinct features of chronic nonspecific cheilitis with infectious angular cheilitis (Oral Candidiasis). A tailored treatment plan, emphasizing oral hygiene practices and local treatments with Sodium Bicarbonate, Tacrolimus ointment, and Chlortetracycline ointment. Follow-up visits demonstrated sustained improvement, highlighting the significance of individualized approaches. CONCLUSIONS: This case underscores the importance of recognizing and managing oral manifestations in patients with a history of cancer and immunotherapy. The patient's response to treatment suggests that a multifaceted approach, combining local therapy with lifestyle modifications, can be effective in managing chronic nonspecific cheilitis associated with immunotherapy. Routine follow-up appointments, guided by personalized medicine principles, contribute to sustained patient well-being.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma de Células Escamosas , Queilite , Neoplasias da Língua , Humanos , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/complicações , Queilite/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Doença Crônica , Pessoa de Meia-Idade , Feminino , Candidíase Bucal/tratamento farmacológico
5.
Angew Chem Int Ed Engl ; : e202412296, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078406

RESUMO

The development of simplified synthetic strategy to create structurally and functionally diverse pseudo-natural macrocyclic molecules is highly appealing but poses a marked challenge. Inspired by natural scaffolds, herein, we describe a practical and concise ligand-enabled Pd(II)-catalysed sp3 C‒H alkylation, olefination and arylation macrocyclization, which could offer a novel set of pseudo-natural macrocyclic sulfonamides. Interestingly, the potential of ligand acceleration in C‒H activation is also demonstrated by an unprecedented enantioselective sp3 C‒H alkylation macrocyclization. Moreover, a combination of in silico screening and biological evaluation led to the identification of a novel spiro-grafted macrocyclic sulfonamide 2a, which showed a promising efficacy for the treatment of Parkinson's disease (PD) in a mouse model through the activation of silent information regulator sirtuin 3 (SIRT3).

7.
BMC Plant Biol ; 24(1): 339, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671375

RESUMO

BACKGROUND: Many phytopathogens secrete a large number of cell wall degrading enzymes (CWDEs) to decompose host cell walls in order to penetrate the host, obtain nutrients and accelerate colonization. There is a wide variety of CWDEs produced by plant pathogens, including glycoside hydrolases (GHs), which determine the virulence, pathogenicity, and host specificity of phytopathogens. The specific molecular mechanisms by which pathogens suppress host immunity remain obscure. RESULT: In this study, we found that CgEC124 encodes a glycosyl hydrolase with a signal peptide and a conserved Glyco_hydro_cc domain which belongs to glycoside hydrolase 128 family. The expression of CgEC124 was significantly induced in the early stage of Colletotrichum graminicola infection, especially at 12 hpi. Furthermore, CgEC124 positively regulated the pathogenicity, but it did not impact the vegetative growth of mycelia. Ecotopic transient expression of CgEC124 decreased the disease resistance and callose deposition in maize. Moreover, CgEC124 exhibited the ß-1,3-glucanase activity and suppresses glucan-induced ROS burst in maize leaves. CONCLUSIONS: Our results indicate that CgEC124 is required for full virulence of C. graminicola but not for vegetative growth. CgEC124 increases maize susceptibility by inhibiting host reactive oxygen species burst as well as callose deposition. Meanwhile, our data suggests that CgEC124 explores its ß-1,3-glucanase activity to prevent induction of host defenses.


Assuntos
Colletotrichum , Doenças das Plantas , Imunidade Vegetal , Zea mays , Colletotrichum/patogenicidade , Resistência à Doença , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Glucana 1,3-beta-Glucosidase/genética , Glucanos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Zea mays/imunologia , Zea mays/microbiologia
8.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501728

RESUMO

Lupus Nephritis (LN) is an autoimmune disease affecting the kidneys, and conventional drug studies have limitations due to its imprecise and complex pathogenesis. Therefore, the aim of this study was to design a novel Lupus Nephritis-targeted drug with good clinical due potential, high potency and selectivity by computer-assisted approach.NIK belongs to the serine/threonine protein kinase, which is gaining attention as a drug target for Lupus Nephritis. we used bioinformatics, homology modelling and sequence comparison analysis, small molecule ab initio design, ADMET analysis, molecular docking, molecular dynamics simulation, and MM/PBSA analysis to design and explore the selectivity and efficiency of a novel Lupus Nephritis-targeting drug, ClImYnib, and a classical NIK inhibitor, NIK SMI1. We used bioinformatics techniques to determine the correlation between lupus nephritis and the NF-κB signaling pathway. De novo drugs design was used to create a NIK-targeted inhibitor, ClImYnib, with lower toxicity, after which we used molecular dynamics to simulate NIK SMI1 against ClImYnib, and the simulation results showed that ClImYnib had better selectivity and efficiency. Our research delves into the molecular mechanism of protein ligands, and we have designed and validated an excellent NIK inhibitor using multiple computational simulation methods. More importantly, it provides an idea of target designing small molecules.Communicated by Ramaswamy H. Sarma.

9.
Microsc Res Tech ; 87(6): 1157-1167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38284615

RESUMO

The viscoelasticity of cells serves as a biomarker that reveals changes induced by malignant transformation, which aids the cytological examinations. However, differences in the measurement methods and parameters have prevented the consistent and effective characterization of the viscoelastic phenotype of cells. To address this issue, nanomechanical indentation experiments were conducted using an atomic force microscope (AFM). Multiple indentation methods were applied, and the indentation parameters were gradually varied to measure the viscoelasticity of normal liver cells and cancerous liver cells to create a database. This database was employed to train machine-learning algorithms in order to analyze the differences in the viscoelasticity of different types of cells and as well as to identify the optimal measurement methods and parameters. These findings indicated that the measurement speed significantly influenced viscoelasticity and that the classification difference between the two cell types was most evident at 5 µm/s. In addition, the precision and the area under the receiver operating characteristic curve were comparatively analyzed for various widely employed machine-learning algorithms. Unlike previous studies, this research validated the effectiveness of measurement parameters and methods with the assistance of machine-learning algorithms. Furthermore, the results confirmed that the viscoelasticity obtained from the multiparameter indentation measurement could be effectively used for cell classification. RESEARCH HIGHLIGHTS: This study aimed to analyze the viscoelasticity of liver cancer cells and liver cells. Different nano-indentation methods and parameters were used to measure the viscoelasticity of the two kinds of cells. The neural network algorithm was used to reverse analyze the dataset, and the methods and parameters for accurate classification and identification of cells are successfully found.


Assuntos
Algoritmos , Fígado , Microscopia de Força Atômica/métodos , Linhagem Celular , Hepatócitos , Viscosidade , Elasticidade
10.
Mol Plant Microbe Interact ; 37(3): 227-231, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37831963

RESUMO

The multifaceted role of pathogen-encoded effectors in plant-pathogen interactions is complex and not fully understood. Effectors operate within intricate host environments, interacting with host proteins and other effectors to modulate virulence. The complex interplay between effectors raises the concept of metaeffectors, wherein some effectors regulate the activity of others. While previous research has demonstrated the importance of effector repertoires in pathogen virulence, only a limited number of studies have investigated the interactions between these effectors. This study explores the interactions among Phakopsora pachyrhizi effector candidates (PpECs). P. pachyrhizi haustorial transcriptome analysis identified a collection of predicted PpECs. Among these, PpEC23 was found to interact with PpEC48, prompting further exploration into their potential interaction with other effectors. Here, we utilized a yeast two-hybrid screen to explore protein-protein interactions between PpECs. A split-luciferase complementation assay also demonstrated that these interactions could occur within soybean cells. Interestingly, PpEC48 displayed the ability to interact with several small cysteine-rich proteins (SCRPs), suggesting its affinity for this specific class of effectors. We show that these interactions involve a histidine-rich domain within PpEC48, emphasizing the significance of structural motifs in mediating effector interactions. The unique nature of PpEC48, showing no sequence matches in other organisms, suggests its relatively recent evolution and potential orphan gene status. Our work reveals insights into the intricate network of interactions among P. pachyrhizi effector-effector interactions. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Phakopsora pachyrhizi , Phakopsora pachyrhizi/metabolismo , Doenças das Plantas , Glycine max , Perfilação da Expressão Gênica , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética
11.
Ultrasound Med Biol ; 50(2): 191-197, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37940461

RESUMO

OBJECTIVE: The aim of the work described here was to investigate the feasibility and diagnostic value of using contrast-enhanced ultrasound (CEUS) galactography with SonoVue in patients with pathologic nipple discharge (PND). METHODS: Twenty-eight patients who underwent breast surgery for PND from May 2019 to August 2021 were included. Routine ultrasound, ductoscopy and CEUS galactography were performed successively. Lesions were diagnosed and localized. The sensitivity, specificity and pre-operative localization value of each examination method were evaluated on post-operative pathology. RESULTS: CEUS galactography was successfully conducted in all 28 patients and revealed negative ductal ectasia, filling stop and filling defect. Ductoscopy revealed positive nodules in 21 cases and negative nodules in 7 cases. A total of 18 nodules were found by routine ultrasound, and the relationship between all nodules and the discharge duct was confirmed after CEUS galactography. Compared with the other two methods, CEUS galactography had higher sensitivity, positive predictive value and negative predictive value (100%, 81.82% and 100%, respectively), while it has the same specificity as routine ultrasound (both 60%). The pre-operative location of the nipple duct was consistent with the intra-operative findings in 28 patients after CEUS galactography. CONCLUSION: The ultrasound contrast agent SonoVue can be used for CEUS galactography in patients with PND. CEUS galactography can improve the detection of ductal nodules and locate the nipple discharge duct pre-operatively. As the technique does not emit radiation and SonoVue is easily metabolized and safe, CEUS galactography is better than conventional imaging for PND patients.


Assuntos
Neoplasias da Mama , Derrame Papilar , Humanos , Feminino , Relevância Clínica , Mamografia/métodos , Derrame Papilar/diagnóstico por imagem , Hexafluoreto de Enxofre , Mamilos/diagnóstico por imagem , Mamilos/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Neoplasias da Mama/metabolismo
12.
EClinicalMedicine ; 57: 101834, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36825238

RESUMO

Background: Tongue images (the colour, size and shape of the tongue and the colour, thickness and moisture content of the tongue coating), reflecting the health state of the whole body according to the theory of traditional Chinese medicine (TCM), have been widely used in China for thousands of years. Herein, we investigated the value of tongue images and the tongue coating microbiome in the diagnosis of gastric cancer (GC). Methods: From May 2020 to January 2021, we simultaneously collected tongue images and tongue coating samples from 328 patients with GC (all newly diagnosed with GC) and 304 non-gastric cancer (NGC) participants in China, and 16 S rDNA was used to characterize the microbiome of the tongue coating samples. Then, artificial intelligence (AI) deep learning models were established to evaluate the value of tongue images and the tongue coating microbiome in the diagnosis of GC. Considering that tongue imaging is more convenient and economical as a diagnostic tool, we further conducted a prospective multicentre clinical study from May 2020 to March 2022 in China and recruited 937 patients with GC and 1911 participants with NGC from 10 centres across China to further evaluate the role of tongue images in the diagnosis of GC. Moreover, we verified this approach in another independent external validation cohort that included 294 patients with GC and 521 participants with NGC from 7 centres. This study is registered at ClinicalTrials.gov, NCT01090362. Findings: For the first time, we found that both tongue images and the tongue coating microbiome can be used as tools for the diagnosis of GC, and the area under the curve (AUC) value of the tongue image-based diagnostic model was 0.89. The AUC values of the tongue coating microbiome-based model reached 0.94 using genus data and 0.95 using species data. The results of the prospective multicentre clinical study showed that the AUC values of the three tongue image-based models for GCs reached 0.88-0.92 in the internal verification and 0.83-0.88 in the independent external verification, which were significantly superior to the combination of eight blood biomarkers. Interpretation: Our results suggest that tongue images can be used as a stable method for GC diagnosis and are significantly superior to conventional blood biomarkers. The three kinds of tongue image-based AI deep learning diagnostic models that we developed can be used to adequately distinguish patients with GC from participants with NGC, even early GC and precancerous lesions, such as atrophic gastritis (AG). Funding: The National Key R&D Program of China (2021YFA0910100), Program of Zhejiang Provincial TCM Sci-tech Plan (2018ZY006), Medical Science and Technology Project of Zhejiang Province (2022KY114, WKJ-ZJ-2104), Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer (JBZX-202006), Natural Science Foundation of Zhejiang Province (HDMY22H160008), Science and Technology Projects of Zhejiang Province (2019C03049), National Natural Science Foundation of China (82074245, 81973634, 82204828), and Chinese Postdoctoral Science Foundation (2022M713203).

13.
Angew Chem Int Ed Engl ; 62(15): e202218886, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36788706

RESUMO

The development of environment-friendly, step economic couplings to generate structurally diverse macrocyclic compounds is highly desirable but poses a marked challenge. Inspired by the C-H oxidation mechanism of cytochromes P450, an unprecedented and practical RhIII -catalyzed acylmethylation macrocyclization via C-H/O2 dual activation has been developed by us. The process of macrocyclization is facilitated by a synergic coordination from pyridine and ester group. Interestingly, the reaction mode derives from a three-component coupling which differs from established olefination and alkylation paths. Density functional theory (DFT) calculations and control experiments revealed the mechanism of this unique C-H/O2 dual activation. The newly achieved acylmethylation macrocyclic products and their derivatives showed a potent anti-H1N1 bioactivity, which may provide an opportunity for the discovery of novel anti-H1N1 macrocyclic leading compounds.


Assuntos
Influenza Humana , Ródio , Humanos , Catálise , Oxirredução , Alquilação
14.
Plant Cell ; 35(3): 1076-1091, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519262

RESUMO

Grain size is an important agronomic trait, but our knowledge about grain size determination in crops is still limited. Endoplasmic reticulum (ER)-associated degradation (ERAD) is a special ubiquitin proteasome system that is involved in degrading misfolded or incompletely folded proteins in the ER. Here, we report that SMALL GRAIN 3 (SMG3) and DECREASED GRAIN SIZE 1 (DGS1), an ERAD-related E2-E3 enzyme pair, regulate grain size and weight through the brassinosteroid (BR) signaling pathway in rice (Oryza sativa). SMG3 encodes a homolog of Arabidopsis (Arabidopsis thaliana) UBIQUITIN CONJUGATING ENZYME 32, which is a conserved ERAD-associated E2 ubiquitin conjugating enzyme. SMG3 interacts with another grain size regulator, DGS1. Loss of function of SMG3 or DGS1 results in small grains, while overexpression of SMG3 or DGS1 leads to long grains. Further analyses showed that DGS1 is an active E3 ubiquitin ligase and colocates with SMG3 in the ER. SMG3 and DGS1 are involved in BR signaling. DGS1 ubiquitinates the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and affects its accumulation. Genetic analysis suggests that SMG3, DGS1, and BRI1 act together to regulate grain size and weight. In summary, our findings identify an ERAD-related E2-E3 pair that regulates grain size and weight, which gives insight into the function of ERAD in grain size control and BR signaling.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Oryza , Enzimas de Conjugação de Ubiquitina , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Oryza/genética , Oryza/metabolismo , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Entropy (Basel) ; 24(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36010767

RESUMO

Information security has become a focal topic in the information and digital age. How to realize secure transmission and the secure storage of image data is a major research focus of information security. Aiming at this hot topic, in order to improve the security of image data transmission, this paper proposes an image encryption algorithm based on improved Arnold transform and a chaotic pulse-coupled neural network. Firstly, the oscillatory reset voltage is introduced into the uncoupled impulse neural network, which makes the uncoupled impulse neural network exhibit chaotic characteristics. The chaotic sequence is generated by multiple iterations of the chaotic pulse-coupled neural network, and then the image is pre-encrypted by XOR operation with the generated chaotic sequence. Secondly, using the improved Arnold transform, the pre-encrypted image is scrambled to further improve the scrambling degree and encryption effect of the pre-encrypted image so as to obtain the final ciphertext image. Finally, the security analysis and experimental simulation of the encrypted image are carried out. The results of quantitative evaluation show that the proposed algorithm has a better encryption effect than the partial encryption algorithm. The algorithm is highly sensitive to keys and plaintexts, has a large key space, and can effectively resist differential attacks and attacks such as noise and clipping.

16.
Mol Plant Pathol ; 23(9): 1331-1345, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35596601

RESUMO

Receptor-like kinases (RLKs) are key modulators of diverse cellular processes such as development and sensing the extracellular environment. FERONIA, a member of the CrRLK1L subfamily, acts as a pleiotropic regulator of plant immune responses, but little is known about how maize FERONIA-like receptors (FLRs) function in responding to the major foliar diseases of maize such as northern corn leaf blight (NLB), northern corn leaf spot (NLS), anthracnose stalk rot (ASR), and southern corn leaf blight (SLB). Here, we identified three ZmFLR homologous proteins that showed cell membrane localization. Transient expression in Nicotiana benthamiana proved that ZmFLRs were capable of inducing cell death. To investigate the role of ZmFLRs in maize, we used virus-induced gene silencing to knock down expression of ZmFLR1/2 and ZmFLR3 resulting in reduced reactive oxygen species production induced by flg22 and chitin. The resistance of maize to NLB, NLS, ASR, and SLB was also reduced in the ZmFLRs knockdown maize plants. These results indicate that ZmFLRs are positively involved in broad-spectrum disease resistance in maize.


Assuntos
Ascomicetos , Resistência à Doença , Resistência à Doença/genética , Doenças das Plantas/genética , Plantas , Zea mays/genética
17.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269662

RESUMO

Rice blast caused by Magnaporthe oryzae is one of the most serious fungous diseases in rice. In the past decades, studies have reported that numerous M. oryzae effectors were secreted into plant cells to facilitate inoculation. Effectors target host proteins to assist the virulence of pathogens via the localization of specific organelles, such as the nucleus, endoplasmic reticulum, chloroplast, etc. However, studies on the pathogenesis of peroxisome-targeting effectors are still limited. In our previous study, we analyzed the subcellular localization of candidate effectors from M. oryzae using the agrobacterium-mediated transient expression system in tobacco and found that MoPtep1 (peroxisomes-targeted effector protein 1) localized in plant peroxisomes. Here, we proved that MoPtep1 was induced in the early stage of the M. oryzae infection and positively regulated the pathogenicity, while it did not affect the vegetative growth of mycelia. Subcellular localization results showed that MoPtep1 was localized in the plant peroxisomes with a signal peptide and a cupredoxin domain. Sequence analysis indicated that the homologous protein of MoPtep1 in plant-pathogenic fungi was evolutionarily conserved. Furthermore, MoPtep1 could suppress INF1-induced cell death in tobacco, and the targeting host proteins were identified using the Y2H system. Our results suggested that MoPtep1 is an important pathogenic effector in rice blast.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Nicotiana/metabolismo , Virulência/genética
18.
Bioact Mater ; 10: 1-14, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34901525

RESUMO

Bone defects remain a major threat to human health and bone tissue regeneration has become a prominent clinical demand worldwide. The combination of microRNA (miRNA) therapy with 3D printed scaffolds has always posed a challenge. It can mimic physiological bone healing processes, in which a biodegradable scaffold is gradually replaced by neo-tissue, and the sustained release of miRNA plays a vital role in creating an optimal osteogenic microenvironment, thus achieving promising bone repair outcomes. However, the balance between two key factors - scaffold degradation behavior and miRNA release profile - on osteogenesis and bone formation is still poorly understood. Herein, we construct a series of miRNA-activated hydrogel scaffolds (MAHSs) generated by 3D printing with different crosslinking degree to screened the interplay between scaffold degradation and miRNA release in the osteoinduction activity both in vitro and in vivo. Although MAHSs with a lower crosslinking degree (MAHS-0 and MAHS-0.25) released a higher amount of miR-29b in a sustained release profile, they degraded too fast to provide prolonged support for cell and tissue ingrowth. On the contrary, although the slow degradation of MAHSs with a higher crosslinking degree (MAHS-1 and MAHS-2.5) led to insufficient release of miR-29b, their adaptable degradation rate endowed them with more efficient osteoinductive behavior over the long term. MAHS-1 gave the most well-matched degradation rate and miR-29b release characteristics and was identified as the preferred MAHSs for accelerated bone regeneration. This study suggests that the bio-adaptable balance between scaffold degradation behavior and bioactive factors release profile plays a critical role in bone regeneration. These findings will provide a valuable reference about designing miRNAs as well as other bioactive molecules activated scaffold for tissue regeneration.

19.
Front Plant Sci ; 12: 732012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603358

RESUMO

Chinese bayberry (Myrica rubra) is a popular, nutrient- and antioxidant-rich fruit in Asia. However, it is susceptible to Drosophila during ripening, which disrupts production and causes economic loss. This study compared the effects of insecticides, insect-proof nets (IPNs), and insect- and rain-proof nets (IRPNs) on Chinese bayberry production and quality. Drosophila was absent in fruits from IPN- or IRPN-treated trees but only significantly reduced by insecticides. IPNs and IRPNs significantly increased fruit diameter, weight, edible rate and the Brix/acid ratio, and IRPNs had the strongest effect. Analysis of 16S rDNA showed that fruits collected from differently treated trees had unique bacterial communities. In IRPN fruits, Acetobacter and Gluconobacter were significantly decreased, reducing sugar consumption and disease; in addition, PICRUSt analysis predicted imputed functional profiles related to carbohydrate and nitrogen metabolism and mineral transport for fruit growth and development. This study proposed the use of IRPNs for improving Chinese bayberry production and quality.

20.
Environ Pollut ; 278: 116837, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33706243

RESUMO

Sedum alfredii is a Cd/Zn hyperaccumulator native to China, which was collected from a mined area where Mn content in soil was extremely high, together with Zn and Cd content. We investigated the tolerance and accumulation ability of Mn and its possible association with Cd hyperaccumulation in this plant species by using MP-AES, SR-µ-XRF, and RT-PCR. The results showed that the hyperaccumulating ecotype (HE) S. alfredii exhibited high tolerance to Mn and accumulating around 10,000 and 12,000 mg kg-1 Mn in roots and shoots, respectively, without exhibiting toxicity under 5000 mg kg-1 Mn treatment for 4 weeks. Exposure to Cd significantly reduced plant uptake of Mn. In contrast, exogenous Mn application significantly improved root uptake and root-to-shoot translocation of Cd, resulting in the increased Cd accumulation in the shoots of HE S. alfredii. SR-µ-XRF analysis demonstrated that high Mn (20 µM) exposure resulted in higher intensities of Cd localized in both stem vascular bundles and cortex, as well as leaf mesophyll cells, than in those treated with low Mn levels (0.2 µM or 2.0 µM). RT-PCR analysis of several genes possibly involved in Mn/Cd transportation showed that expression of SaNramp3 in roots was significantly reduced under high Mn exposure. These results suggested a significant interaction between Cd and Mn in the HE S. alfredii plants, possibly through their competition for transporters and theoretically provided a strategy to improve the efficiency of Cd extraction from polluted soils by this plant species, after using appropriate nutrient management of Mn.


Assuntos
Sedum , Poluentes do Solo , Cádmio , China , Raízes de Plantas/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA