Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 144: 55-66, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802238

RESUMO

Composting presents a viable management solution for lignocellulose-rich municipal solid waste. However, our understanding about the microbial metabolic mechanisms involved in the biodegradation of lignocellulose, particularly in industrial-scale composting plants, remains limited. This study employed metaproteomics to compare the impact of upgrading from aerated static pile (ASP) to agitated bed (AB) systems on physicochemical parameters, lignocellulose biodegradation, and microbial metabolic pathways during large-scale biowaste composting process, marking the first investigation of its kind. The degradation rates of lignocellulose including cellulose, hemicellulose, and lignin were significantly higher in AB (8.21%-32.54%, 10.21%-39.41%, and 6.21%-26.78%) than those (5.72%-23.15%, 7.01%-33.26%, and 4.79%-19.76%) in ASP at three thermal stages, respectively. The AB system in comparison to ASP increased the carbohydrate-active enzymes (CAZymes) abundance and production of the three essential enzymes required for lignocellulose decomposition involving a mixture of bacteria and fungi (i.e., Actinobacteria, Bacilli, Sordariomycetes and Eurotiomycetes). Conversely, ASP primarily produced exoglucanase and ß-glucosidase via fungi (i.e., Ascomycota). Moreover, AB effectively mitigated microbial stress caused by acetic acid accumulation by regulating the key enzymes involved in acetate conversion, including acetyl-coenzyme A synthetase and acetate kinase. Overall, the AB upgraded from ASP facilitated the lignocellulose degradation and fostered more diverse functional microbial communities in large-scale composting. Our findings offer a valuable scientific basis to guide the engineering feasibility and environmental sustainability for large-scale industrial composting plants for treating lignocellulose-rich waste. These findings have important implications for establishing green sustainable development models (e.g., a circular economy based on material recovery) and for achieving sustainable development goals.


Assuntos
Biodegradação Ambiental , Compostagem , Lignina , Lignina/metabolismo , Compostagem/métodos , Microbiologia do Solo , Bactérias/metabolismo , Eliminação de Resíduos/métodos
2.
Plant Physiol Biochem ; 201: 107811, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37307719

RESUMO

Microplastics and di-2-ethylhexyl phthalate (DEHP) are prevalent and emerging pollutants in agro-ecosystem, raising concerns due to their widespread co-presence. Nevertheless, their combined toxicity on terrestrial plants remains largely unexplored. This study investigated the impact of polypropylene microplastics (MPs), DEHP, and their mixture on the physiological and biochemical characteristics of cucumber seedlings. The changes of membrane stability index (MSI), antioxidase activities, photosynthetic pigments and chlorophyll fluorescence in cucumber seedlings were assessed. The results demonstrated that MPs alone significantly inhibited MSI, photosynthetic pigments (Chl a, Chl b, and Chl a + b), Fm and qp of cucumber seedlings, and significantly promoted the carotene content and antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in cucumber seedlings. While DEHP alone significantly inhibited MSI and photosynthetic pigments of cucumber seedlings, and significantly promoted antioxidant enzyme activities in cucumber seedlings. Moreover, the combined toxicity of MPs and DEHP was found to be less pronounced than that of the single action of MPs and DEHP. The interaction between DEHP and MPs may contribute to the reduced toxicity. Abbott's modeling revealed that the combined toxicity systems were all antagonistic (RI < 1). Two-factor analysis and principal component analysis further confirmed that the treatment of MPs alone contributed the most to the toxicological effects of the physiological properties of cucumbers. In summary, this study highlighted the importance of understanding the combined effects of MPs and DEHP on plant physiology, providing insights for the development of effective treatments for emerging pollutants in agricultural ecosystems.


Assuntos
Cucumis sativus , Dietilexilftalato , Poluentes Ambientais , Cucumis sativus/fisiologia , Antioxidantes/farmacologia , Microplásticos/farmacologia , Plásticos , Polipropilenos/farmacologia , Ecossistema , Dietilexilftalato/farmacologia , Plântula
3.
Ecotoxicol Environ Saf ; 251: 114516, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36628877

RESUMO

Mercury (Hg) pollution is a well-recognized global environmental and health issue and exhibits distinctive persistence, neurotoxicity, bioaccumulation, and biomagnification effects. As the largest global Hg reservoir, the Hg cumulatively stored in soils has reached as high as 250-1000 Gg. Even more concerning is that global soil-rice systems distributed in many countries have become central to the global Hg cycle because they are both a major food source for more than 3 billion people worldwide and the central bridge linking atmospheric and soil Hg circulation. In this review, we discuss the form distribution, transformation, and bioavailability of Hg in soil-rice systems by focusing on the Hg methylation and demethylation pathways and distribution, uptake, and accumulation in rice plants and the effects of Hg on the community structure and ecological functions of microorganisms in soil-rice systems. In addition, we clarify the mechanisms through which commonly used humus and biochar organic amendments influence Hg and its environmental effects in soil-rice systems. The review also elaborates on the advantages of sulfur-modified biochars and their critical role in controlling Hg migration and bioavailability in soils. Finally, we provide key information about Hg pollution in soil-rice systems, which is of great significance for developing appropriate strategies and mitigation planning to limit Hg bioconcentration in rice crops and achieving key global sustainable development goals, such as the guarantee of food security and the promotion of sustainable agriculture.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Solo/química , Oryza/metabolismo , Agricultura , Poluentes do Solo/análise
4.
Environ Res ; 215(Pt 1): 114351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116488

RESUMO

Nitrogen (N) fertilizer is highly significant in agricultural production, but long-term N addition causes changes in quality indicators, such as soil organic matter (SOM), thus affecting the absorption and accumulation of organic pollutants. Therefore, paying more attention to organic fertilizers in the development of green agriculture is necessary. However, the accumulation of heavy metals (HMs) contained in organic fertilizers (especially sewage sludge compost (SSC)) in the soil can cause environmental contamination, but how this cumulative reaction changes with the long-term N addition remains unclear. Here the SSC impact on the bioavailability of five typical HMs (cadmium-Cd, chromium-Cr, copper-Cu, lead-Pb and arsenic-As) in the soil-plant system before and after SSC application was demonstrated through a field study in soils with different application rates of 0, 100 and 300 kg N ha-1yr-1, respectively. Our results showed that SSC application increased the concentration of most HMs in soil profiles and plant systems (wheat roots and grains), but the accumulation rate of HMs and most bioaccumulation values (BAC-bioaccumulation coefficient and BCF-bioconcentration factor) in plant systems were both lower in high-N addition soil than that in the low-N group. Moreover, speciation distribution results further indicated that SSC application increased the LB (liable available form, including F1-water soluble, F2-ion exchangeable, and F3-bound to carbonates) form of HMs and decreased the PB (potentially available form, including F4-humic acids and F6-fraction bound to organic matter) form of HMs in high-N addition soil, respectively. Those results suggested that HM bioavailability in high-N addition soil was lower than that in low-N addition soil when applied with SSC. Overall, this study found that increasing soil N content can inhibit the bioavailability of HMs when applying SSC, providing suggestions for optimizing the trialability and risk assessment of SSC application.


Assuntos
Arsênio , Compostagem , Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Cromo , Cobre , Fertilizantes , Substâncias Húmicas , Chumbo , Metais Pesados/análise , Nitrogênio , Plantas/metabolismo , Esgotos , Solo , Poluentes do Solo/análise , Água
5.
New Phytol ; 229(6): 3440-3452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33259063

RESUMO

Invasive plants often change a/biotic soil conditions to increase their competitiveness. We compared the microbially mediated soil nitrogen (N) cycle of invasive Mikania micrantha and two co-occurring native competitors, Persicaria chinensis and Paederia scandens. We assessed how differences in plant tissue N content, soil nutrients, N cycling rates, microbial biomass and activity, and diversity and abundance of N-cycling microbes associated with these species impact their competitiveness. Mikania micrantha outcompeted both native species by transferring more N to plant tissue (37.9-55.8% more than natives). We found total soil N to be at lowest, and available N highest, in M. micrantha rhizospheres, suggesting higher N cycling rates compared with both natives. Higher microbial biomass and enzyme activities in M. micrantha rhizospheres confirmed this, being positively correlated with soil N mineralization rates and available N. Mikania micrantha rhizospheres harbored highly diverse N-cycling microbes, including N-fixing, ammonia-oxidizing and denitrifying bacteria and ammonia-oxidizing archaea (AOA). Structural equation models indicated that M. micrantha obtained available N via AOA-mediated nitrification mainly. Field data mirrored our experimental findings. Nitrogen availability is elevated under M. micrantha invasion through enrichment of microbes that participate in N cycling, in turn increasing available N for plant growth, facilitating high interspecific competition.


Assuntos
Mikania , China , Espécies Introduzidas , Nitrogênio , Solo , Microbiologia do Solo
6.
Ecol Evol ; 10(23): 13355-13369, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304543

RESUMO

Selecting native species for restoration is often done without proper ecological background, particularly with regard to how native and invasive species interact. Here, we provide insights suggesting that such information may greatly enhance restoration success. The performance of the native vine, Pueraria lobata, and that of the invasive bitter vine, Mikania micrantha, were investigated in South China to test how priority effects (timing and rate of germination and seedling growth) and competition (phytochemical effects and competitive ability) impact invasive plant performance. We found that, in the absence of competition, the germination rate of M. micrantha, but not of P. lobata, was significantly affected by light availability. P. lobata seedlings also performed better than those of M. micrantha during early growth phases. Under competition, negative phytochemical effects of P. lobata on M. micrantha were strong and we found M. micrantha to have lower performance when grown with P. lobata compared to when grown by itself. Relative interaction indexes indicated that, under interspecific competition, P. lobata negatively affected (i.e., inhibited) M. micrantha, whereas M. micrantha positively affected (i.e., facilitated) P. lobata. Higher photosynthetic efficiency and soil nutrient utilization put P. lobata at a further advantage over M. micrantha. Field trails corroborated these experimental findings, showing little recruitment of M. micrantha in previously invaded and cleared field plots that were sown with P. lobata. Thus, P. lobata is a promising candidate for ecological restoration and for reducing impacts of M. micrantha in China. This research illustrates that careful species selection may improve restoration outcomes, a finding that may also apply to other invaded ecosystems and species.

7.
Nat Commun ; 11(1): 340, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953413

RESUMO

Mikania micrantha is one of the top 100 worst invasive species that can cause serious damage to natural ecosystems and substantial economic losses. Here, we present its 1.79 Gb chromosome-scale reference genome. Half of the genome is composed of long terminal repeat retrotransposons, 80% of which have been derived from a significant expansion in the past one million years. We identify a whole genome duplication event and recent segmental duplications, which may be responsible for its rapid environmental adaptation. Additionally, we show that M. micrantha achieves higher photosynthetic capacity by CO2 absorption at night to supplement the carbon fixation during the day, as well as enhanced stem photosynthesis efficiency. Furthermore, the metabolites of M. micrantha can increase the availability of nitrogen by enriching the microbes that participate in nitrogen cycling pathways. These findings collectively provide insights into the rapid growth and invasive adaptation.


Assuntos
Genoma de Planta , Mikania/crescimento & desenvolvimento , Mikania/genética , Mikania/fisiologia , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Cromossomos de Plantas , Ecologia , Ecossistema , Evolução Molecular , Genômica , Espécies Introduzidas , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Análise de Sequência de DNA , Transcriptoma
8.
Environ Pollut ; 255(Pt 1): 113170, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520909

RESUMO

Nitrogen (N) addition can change physicochemical properties and biogeochemical processes in soil, but whether or not these changes further affect the transport and transformation of heavy metal speciation is unknown. Here, a long-term (2004-2016) field experiment was conducted to assess the responses of different heavy metal speciation in three soil aggregate fractions to N additions in a temperate agroecosystem of North China. The organic matter turnover time was quantified based on changes in δ13C following the conversion from C3 (wheat) to C4 crop (corn). Averagely, N addition decreases and increases the heavy metal contents in bioavailable and organic bound fractions by 27.5% and 16.6%, respectively, suggesting N addition promotes the transformation of heavy metal speciation from bioavailable to organic bound, and such a promotion in a small aggregate fraction is more remarkable than that in a large aggregate fraction. The transformations of heavy metal speciation from bioavailable to organic bound in all soil aggregate fractions are largely dependent on the increments in the turnover time of organic matter. The increase in organic matter turnover time induced by N addition may inhibit the desorption of heavy metals from organic matter by prolonging the interaction time between heavy metals and organic matter and enhance the capacity of organic matter to adsorb heavy metals by increasing the humification degree and functional group. Our work can provide insights into the accumulation, migration, and transformation of heavy metals in soils in the context of increasing global soil N input from a microenvironmental perspective.


Assuntos
Metais Pesados/análise , Nitrogênio/química , Poluentes do Solo/análise , Solo/química , Adsorção , China , Triticum/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-31484337

RESUMO

Wastewater irrigation is widely practiced and may cause serious environmental problems. However, current knowledge on the effects of long-term irrigation with wastewater from different sources on the biouptake of trace metals (TMs) in the rhizosphere zone by plants in farmlands is limited. Here, we analyzed wheat rhizosphere soil and wheat roots collected from a typical wastewater irrigation area in North China to evaluate the influence of wastewater irrigation from different sources on the bioavailability of trace metals in soils. Results showed that irrigation with tanning and domestic wastewater helped enhance the bioavailability of trace metals in rhizosphere soil by increasing the active organic carbon content, soil redox potential, and catalase activity, thus enhancing the proportion of the potentially bioavailable part of trace metal speciation. Conversely, irrigation with pharmaceutical wastewater can reduce the bioavailability of trace metals in rhizosphere soil by increasing total soil antibiotics and thus decreasing the proportions of bioavailable and potentially bioavailable parts of trace metal speciation. These findings can provide insights into the migration and transformation of trace metal speciation in soil rhizosphere microenvironments under the context of wastewater irrigation.


Assuntos
Irrigação Agrícola/métodos , Metais/metabolismo , Rizosfera , Poluentes do Solo/metabolismo , Triticum/metabolismo , Águas Residuárias , Disponibilidade Biológica , China , Indústria Farmacêutica , Resíduos Industriais , Metais/análise , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análise , Curtume , Triticum/química , Águas Residuárias/análise
10.
Ecol Evol ; 9(16): 9177-9184, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463014

RESUMO

The invasive ability of alien plants is not only affected by their biological characteristics but also by environmental factors. Therefore, investigating the relationship between plant growth and environmental factors is helpful for predicting the invasive potential of alien species. Mikania micrantha H.B.K. (a vine of Asteraceae) is one of the top 10 most invasive weeds worldwide and causes serious damage to agroforestry ecosystems. Water is an important environmental factor that affects plant growth; however, the relationship between water conditions and the rapid growth of M. micrantha is not clear. In this study, 162 M. micrantha population sizes were investigated in dry, wet and aquatic habitats in the Pearl River Delta region of Guangdong, China. In addition, the seed germination and seedling growth characteristics of M. micrantha were determined by submerging tests. The results showed that the population size of M. micrantha was the largest in aquatic habitats, and the soil moisture content was positively correlated to the population size in dry and wet habitats. Furthermore, M. micrantha seeds could germinate underwater and grow out of the water surface at a depth of 6 cm with a survival rate of 7.4%. Aquatic habitat promoted vine elongation, whereas dry habitats resulted in the reverse pattern. After 8 weeks of water treatments, the vine stem length was 2 and 3 times longer in the aquatic habitat than the wet and dry habitats, respectively. The total root length, root volume, and root tip number increased significantly in the aquatic habitat when compared to those in the wet habitat; however, these parameters exhibited the opposite pattern in the dry habitat. The results showed that flooding with shallow water is conducive to the invasiveness of M. micrantha, suggesting that water is the key determinant during the intrusion process of M. micrantha populations. OPEN RESEARCH BADGES: This article has been awarded Open Data, Open Materials and Preregistered research design Badges. All materials and data are publicly accessible via the Open Science Framework at https://osf.io/ksz2f/?viewonly=30b6fec21f0447edbdfc9cebe2b01065, https://osf.io/a5ymf/ and https://osf.io/ksz2fl?viewonly=cfcbfOfc829c402fb22deb3be801dffc.

11.
Materials (Basel) ; 12(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986929

RESUMO

Biochar is widely used in the environmental-protection field. This study presents the first investigation of the mechanism of biochar prepared using iron (Fe)-rich biomass and its impact on the reductive removals of Orange G dye by Shewanella oneidensis MR-1. The results show that biochars significantly accelerated electron transfer from cells to Orange G and thus stimulated reductive removal rate to 72-97%. Both the conductive domains and the charging and discharging of surface functional groups in biochars played crucial roles in the microbial reduction of Orange G to aniline. A high Fe content of the precursor significantly enhanced the conductor performance of the produced biochar and thus enabled the biochar to have a higher reductive removal rate of Orange G (97%) compared to the biochar prepared using low-Fe precursor (75%), but did not promote the charging and discharging capacity of the produced biochar. This study can prompt the search for natural biomass with high Fe content to confer the produced biochar with wide-ranging applications in stimulating the microbial reduction of redox-active pollutants.

12.
J Hazard Mater ; 359: 9-18, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30007200

RESUMO

Whether crop intercropping can affect the uptake of phthalic acid esters (PAEs) by plant roots from soils is unclear. In this study, we compare the PAE uptake by plant roots between the wheat/maize intercropping and the wheat and maize monocropping in a field work. We show that the PAE bioconcentration factors of wheat and maize roots are remarkably higher under wheat/maize intercropping than under monocropping, indicating that intercropping may significantly increase the biouptake of PAEs as compared to monocropping. The wheat/maize intercropping can increase the electron transfer capacity (ETC) of water-extractable organic matter (WEOM) in soils by increasing the abundance of redox-active functional groups in WEOM. The ETC-enhanced WEOM may be an important reason for facilitating the reduction of ferric iron [Fe(III)] minerals to soluble ferrous iron [Fe(II)] by acting as electron shuttle, thus leading to the release of the PAEs originally occluded in Fe(III) minerals into soil pore water. The increased bioavailable PAEs distributed in the soil pore water under wheat/maize intercropping eventually result in the increase in the uptake of PAEs by plant roots from soils. The results can provide insights into the link between the uptake of PAEs by crops and the cropping practices in agricultural ecosystems.


Assuntos
Agricultura/métodos , Ésteres/metabolismo , Ácidos Ftálicos/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Triticum/metabolismo , Zea mays/metabolismo , Disponibilidade Biológica , Porosidade
13.
Sci Total Environ ; 630: 141-145, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477111

RESUMO

Crop straw incorporation has become a prevailing agricultural practice that guarantees the food production and security. There is a significant body of work on the effects of straw incorporation on the methane (CH4) emissions in paddy fields. However, it is unclear whether there are diverse links between CH4 emission dynamics and incorporations of different organic compound classes of straw to paddy fields. In this study, soil incubations were conducted to assess the respective effect of incorporations of hydrolysable amino acid (HAA), dilute-acid extractable carbohydrate (DAC), lipid and acid-insoluble organic matter (AIOM) fractions of rice straw on the CH4 emission in paddy soil. It is revealed that incorporations of HAA and DAC fractions exert the greatest intensities to stimulate the CH4 emissions, which mainly takes place in the early period of incubation; on contrary, the incorporation of lipid fraction exerts the lowest intensity and mainly takes place in the late period. The pattern of CH4 emission after incorporation of AIOM fraction occurs peaks both in the early and late periods of incubation. Our findings highlight that the time of occurrence and intensity of effects of rice straw incorporation on CH4 emissions vary significantly depending on the different organic compound classes of rice straw, which may be key to proposing a promising management strategy for mitigating CH4 emissions in paddy fields in the context of straw incorporation.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Metano/análise , Solo/química , Oryza/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA