RESUMO
Long noncoding RNAs (lncRNAs) play important roles in the progression of human cancer. It is reported that lncRNA plasmacytoma variant translocation 1 (PVT1) is involved in colorectal cancer (CRC), however, the underlying mechanism remains to be explored deeply, especially by in vivo models. In the present study, bioinformatics analysis showed that the expression level of PVT1 was upregulated in CRC tissues and highly associated with poor prognosis of CRC patients. In cultured CRC cells, knockdown of PVT1 inhibited cell proliferation and migration of CRC cells, while overexpression of PVT1 promoted the progression of CRC cells. In zebrafish xenografts, the silencing of PVT1 also suppressed the growth and metastasis of CRC cells. For mechanism studies, the binding relationships among PVT1, miR-24-3p, and Neuropilin 1 (NRP1) were predicted by starBase firstly. The luciferase reporter assays verified that PVT1 and NRP1 could bind with miR-24-3p directly. Further studies showed miR-24-3p negatively regulated the progression of CRC cells, the inhibition of miR-24-3p counteracted the repression effects of CRC progression when knocking down PVT1. In addition, the expression of NRP1 was regulated by PVT1, and NRP1 overexpression could partially rescue the inhibition effects of CRC progression when knocking down PVT1 in vitro and in vivo. Our study reveals that PVT1 promotes the proliferation and metastasis of CRC via regulating the miR-24-3p/NRP1 axis, which provides a prognosis biomarker and a potential therapeutic target for CRC patients.
Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuropilina-1/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
BACKGROUND: Radiation-induced lung injury (RILI) is a common side effect of thoracic tumor radiotherapy, including early-stage radiation-induced lung injury (RP) and late-stage radiation-induced pulmonary fibrosis (RIPF). Currently, it is urgently needed to clarify the pathogenesis of RILI and find safe and effective RILI treatment methods. Irradiation causes DNA damage and oxidative stress in tissues and cells, induces cellular senescence, and promotes the occurrence and development of RILI. In recent years, Anisodamine (654-2) has shown potential therapeutic value in acute lung injury, acute kidney injury, chlamydial pneumonia, and COVID-19. However, there is currently no research on the mechanism of 654-2-mediated cellular senescence and its preventive and therapeutic effects on RILI. PURPOSE: This study aimed to investigate the protective effect and mechanism of 654-2 on X-ray-induced RILI. METHODS: In vivo experiments involved a mouse RILI model with 18 Gy X-ray irradiation. Mice were divided into control, model, medication (control + 654-2), and treatment (model + 654-2) groups. And mice in medication and treatment groups were intraperitoneal injection of 5 mg/kg 654-2 every other day until being sacrificed at week 6. In vitro experiments used MLE-12 cells irradiated with 16 Gy and divided into control, model, and model + 654-2ï¼2 µM and 10 µMï¼ groups. Various assays were performed to evaluate lung tissue morphology, fibrosis, apoptosis, cytokine expression, cellular senescence, protein expression, and antioxidant capacity. RESULTS: 654-2 mitigated pulmonary pathological damage, inflammation, DNA damage, cellular senescence, and apoptosis in RILI mice and MLE-12 cells. It restored epithelial cell proliferation ability and enhanced antioxidant capacity. Additionally, 654-2 activated the Nrf2/ARE pathway, increased Nrf2 phosphorylation, and upregulated antioxidant gene expression. Inhibition of Nrf2 reversed the effects of 654-2 on ROS production, antioxidant capacity, and cell senescence. CONCLUSION: 654-2 can activate the Nrf2/ARE pathway, enhance cellular antioxidant capacity, and inhibit cellular senescence, thereby exerting a protective effect against RILI.
RESUMO
In China, esophageal squamous cell carcinoma (ESCC), capable of direct invasion and early metastasis, exhibits high mortality. Identification of the molecular basis driving ESCC progression and development of new diagnostic biomarkers are urgently needed. Cyclin-dependent kinase inhibitor 3 (CDKN3) performs crucial roles in the modulation of tumor development. The present study aimed to explore the functions and underlying mechanism of CDKN3 in regulating ESCC cell proliferation and invasion. The expression levels of CDKN3 in ESCC cells were evaluated by reverse transcription-quantitative PCR. Cell counting kit-8 and colony forming assays were used to evaluate cell viability. Wound-healing assay was performed to explore cell migration. Transwell invasion analysis was conducted to investigate the invasive capacity of ESCC cells. Protein levels were detected by western blot assay. The results demonstrated that the expression of CDKN3 was significantly upregulated in ESCC tissues, as predicted using the UALCAN and Gene Expression Omnibus databases. PCR and western blot assays confirmed that CDKN3 was upregulated in ESCC cell lines. Functional assays revealed that CDKN3 knockdown with small interfering RNA decreased the ability of ESCC cells to proliferate, invade and migrate and suppressed G1/S transition. Further mechanistic analyses demonstrated that CDKN3 promoted cell proliferation and invasion by activating the AKT signaling pathway in ESCC cells. To the best of our knowledge, the present study is the first to identify the functions of CDKN3 in ESCC and provide evidence that CDKN3 regulates tumor progression by activating the AKT signaling pathway. Therefore, CDKN3 may serve as a potential effective therapeutic target for ESCC treatment.
RESUMO
Dendritic cells (DC) are highly efficient antigen-presenting cells. DC may be used to create DC vaccines against cancer, but the optimal strategies remain to be elucidated. This study aimed to examine the benefits and adverse effects of using esophageal cancer cell antigens to stimulate DC to trigger the specific immune response in patients with esophageal cancer undergoing radiotherapy. This was an observational cohort study performed at Lianshui County People's Hospital between September 2010 and June 2012. Forty patients with esophageal cancer planned to receive radiotherapy were selected, and 28 received the DC vaccine. DC were isolated, loaded with antigens, and intradermally injected after being cultured for 1 week. One week after injection, the patients underwent a delayed-type hypersensitivity test. Serum Th1 cytokines [interleukin (IL)-2, IL-12, and interferon (IFN)-γ] and antigen-specific IFN-γCD8 T cells were tested before and after vaccination. Patients were followed up for 2 years. Adverse events were monitored. Patients in the vaccine group tolerated the DC vaccine. Levels of serum IL-2 (+92.4%), IL-12 (+70.9%), and IFN-γ (+214.3%) as well as the proportion of IFN-γCD8 T cells (3.0-16.4-fold) were significantly increased compared with baseline and the control group (all P<0.05). The 1- (82.1% vs. 50.0%, P=0.04) and 2-year survival (67.8% vs. 33.3%, P=0.04) was improved by vaccination. Only 2 patients showed mild fever. In conclusion, the DC vaccine triggered the specific immune response and induced the secretion of Th1 cytokines. The vaccine may lead to better survival, but this have to be confirmed. Adverse events were rare and mild.