Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(5): 2151-2166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505602

RESUMO

Background: The therapeutic benefits of targeting follicle-stimulating hormone (FSH) receptor in treatment of ovarian cancer are significant, whereas the role of FSH in ovarian cancer progresses and the underlying mechanism remains to be developed. Methods: Tissue microarray of human ovarian cancer, tumor xenograft mouse model, and in vitro cell culture were used to investigate the role of FSH in ovarian carcinogenesis. siRNA, lentivirus and inhibitors were used to trigger the inactivation of genes, and plasmids were used to increase transcription of genes. Specifically, pathological characteristic was assessed by histology and immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Results: Histology and IHC of human normal ovarian and tumor tissue confirmed the association between FSH and Snail in ovarian cancer metastasis. Moreover, in epithelial ovarian cancer cells and xenograft mice, FSH was showed to promote epithelial mesenchymal transition (EMT) progress and metastasis of ovarian cancer via prolonging the half-life of Snail mRNA in a N6-methyladenine methylation (m6A) dependent manner, which was mechanistically through the CREB/ALKBH5 signaling pathway. Conclusions: These findings indicated that FSH induces EMT progression and ovarian cancer metastasis via CREB/ALKBH5/Snail pathway. Thus, this study provided new insight into the therapeutic strategy of ovarian cancer patients with high level of FSH.


Assuntos
Adenina/análogos & derivados , Neoplasias Ovarianas , Humanos , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Hormônio Foliculoestimulante/metabolismo , Transição Epitelial-Mesenquimal/genética , Desmetilação , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
2.
ACS Appl Mater Interfaces ; 16(1): 454-466, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147632

RESUMO

Fine-tuning the dispersion of active metal species on widely used supports is a research hotspot in the catalysis community, which is vital for achieving a balance between the atomic utilization efficiency and the intrinsic activity of active sites. In this work, using bayerite Al(OH)3 as support directly or after precalcination at 200 or 550 °C, Pt/Al2O3 catalysts with distinct Pt dispersions from single atoms to clusters (ca. 2 nm) were prepared and evaluated for CO and NH3 removal. Richer surface hydroxyl groups on AlOx(OH)y support were proved to better facilitate the dispersion of Pt. However, Pt/Al2O3 with relatively lower Pt dispersion could exhibit better activity in CO/NH3 oxidation reactions. Further reaction mechanism study revealed that the Pt sites on Pt/Al2O3 with lower Pt dispersion could be activated to Pt0 species much easier under the CO oxidation condition, on which a higher CO adsorption capacity and more efficient O2 activation were achieved simultaneously. Compared to Pt single atoms, PtOx clusters could also better activate NH3 into -NH2 and -HNO species. The higher CO adsorption capacity and the more efficient NH3/O2 activation ability on Pt/Al2O3 with relatively lower Pt dispersion well explained its higher CO/NH3 oxidation activity. This study emphasizes the importance of avoiding a singular pursuit of single-atom catalyst synthesis and instead focusing on achieving the most effective Pt species on Al2O3 support for targeted reactions. This approach avoids unnecessary limitations and enables a more practical and efficient strategy for Pt catalyst fabrication in emission control applications.

3.
Environ Sci Technol ; 57(41): 15747-15758, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788364

RESUMO

Aiming at the development of an efficient NH3 oxidation catalyst to eliminate the harmful NH3 slip from the stationary flue gas denitrification system and diesel exhaust aftertreatment system, a facile ZrO2 doping strategy was proposed to construct Pt1/CexZr1-xO2 catalysts with a tunable Pt-CeO2 interaction strength and Pt-O-Ce coordination environment. According to the results of systematic characterizations, Pt species supported on CexZr1-xO2 were mainly in the form of single atoms when x ≥ 0.7, and the strength of the Pt-CeO2 interaction and the coordination number of Pt-O-Ce bond (CNPt-O-Ce) on Pt1/CexZr1-xO2 showed a volcanic change as a function of the ZrO2 doping amount. It was proposed that the balance between the reasonable concentration of oxygen defects and limited surface Zr-Ox species well accounted for the strongest Pt-CeO2 interaction and the highest CNPt-O-Ce on Pt/Ce0.9Zr0.1O2. It was observed that the Pt/Ce0.9Zr0.1O2 catalyst exhibited much higher NH3 oxidation activity than other Pt/CexZr1-xO2 catalysts. The mechanism study revealed that the Pt1 species with the stronger Pt-CeO2 interaction and higher CNPt-O-Ce within Pt/Ce0.9Zr0.1O2 could better activate NH3 adsorbed on Lewis acid sites to react with O2 thus resulting in superior NH3 oxidation activity. This work provides a new approach for designing highly efficient Pt/CeO2 based catalysts for low-temperature NH3 oxidation.


Assuntos
Amônia , Platina , Amônia/química , Oxirredução , Zircônio/química , Oxigênio , Catálise
4.
Environ Sci Technol ; 57(33): 12501-12512, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37563957

RESUMO

Tuning the metal-support interaction and coordination environment of single-atom catalysts can help achieve satisfactory catalytic performance for targeted reactions. Herein, via the facile control of calcination temperatures for Pt catalysts on pre-stabilized Ce0.9Zr0.1O2 (CZO) support, Pt single atoms (Pt1) with different strengths of Pt-CeO2 interaction and coordination environment were successfully constructed. With the increase in calcination temperature from 350 to 750 °C, a stronger Pt-CeO2 interaction and higher Pt-O-Ce coordination number were achieved due to the reaction between PtOx and surface Ce3+ species as well as the migration of Pt1 into the surface lattice of CZO. The Pt/CZO catalyst calcined at 750 °C (Pt/CZO-750) exhibited a surprisingly higher C3H8 oxidation activity than that calcined at 550 °C (Pt/CZO-550). Through systematic characterizations and reaction mechanism study, it was revealed that the higher concentration of surface Ce3+ species/oxygen vacancies and the stronger Pt-CeO2 interaction on Pt/CZO-750 could better facilitate the activation of oxygen to oxidize C3H8 into reactive carbonate/carboxyl species and further promote the transformation of these intermediates into gaseous CO2. The Pt/CZO-750 catalyst can be a potential candidate for the catalytic removal of hydrocarbons from vehicle exhaust.


Assuntos
Oxigênio , Propano , Catálise , Oxirredução
5.
Gynecol Endocrinol ; 39(1): 2250881, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37647939

RESUMO

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and membrane-initiated non-genomic effects. The mutation of aspartic acid into alanine in vitro revealed the critical role of aspartic acid 258 (corresponding to mouse amino acid site 262) of ERα for non-nuclear function. Our previous in vitro study revealed that this mutation blocked estrogen's non-genomic effects on vascular endothelial H2S release. Here, we studied the in vivo role of the aspartic acid 262 of ERα in the reproductive system and in the vascular tissue. APPROACH AND RESULTS: We generated a mouse model harboring a point mutation of the murine counterpart of this aspartic acid into alanine (ERαD262A). Our results showed that the ERαD262A females are fertile with standard hormonal serum levels, but the uterine development and responded with estrogen and follicular development are disrupted. In line with our previous study, we found that the rapid dilation of the aorta was abrogated in ERαD262A mice. In contrast to the previously reported R264-ERα mice, the classical estrogen genomic effector SP1/NOS3/AP1 and the nongenomic effectors p-eNOs, p-AKT, and p-ERK were disturbed in the ERαD262A aorta. Besides, the serum H2S concentration was decreased in ERαD262A mice. Together, ERαD262A mice showed compromised both genomic and non-genomic actions in response to E2. CONCLUSIONS: These data showed that aspartic acid 262 of ERα are important for both genomic and non-genomic effects of E2. Our data provide a theoretical basis for further selecting an effective non-genomic mouse model and provide a new direction for developing estrogen non-genomic effect inhibitors.


Assuntos
Receptor alfa de Estrogênio , Receptores de Estrogênio , Feminino , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Ácido Aspártico/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Mutação , Transdução de Sinais , Alanina , Modelos Animais de Doenças , Antagonistas de Estrogênios
6.
Chemistry ; 29(16): e202203432, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36567623

RESUMO

The size effect on nanoparticles, which affects the catalysis performance in a significant way, is crucial. The tuning of oxygen vacancies on metal-oxide support can help reduce the size of the particles in active clusters of Pt, thus improving catalysis performance of the supported catalyst. Herein, Ce-Sn solid solutions (CSO) with abundant oxygen vacancies have been synthesized. Activated by simple CO reduction after loading Pt species, the catalytic CO oxidation performance of Pt/CSO was significantly better than that of Pt/CeO2 . The reasons for the elevated activity were further explored regarding ionic Pt single sites being transformed into active Pt clusters after CO reduction. Due to more exposed oxygen vacancies, much smaller Pt clusters were created on CSO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm). Consequently, more exposed active Pt clusters significantly improved the ability to activate oxygen and directly translated to the higher catalytic oxidation performance of activated Pt/CSO catalysts in vehicle emission control applications.

7.
J Environ Manage ; 232: 8-21, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30466010

RESUMO

Problem soils are referred to as those with poor physical, chemical, and biological properties that inhibit or prevent plant growth. These poor properties may be a result of soil formation processes but are largely due to inappropriate farming practices or anthropogenic pollution. The world has lost a third of its arable land due to erosion and pollution in the past 40 years. Thus, there is an urgent need for improving and remediating problem soils. As a novel multifunctional carbon material, biochar has been widely used as a soil amendment for improving soil quality. Previous reviews have summarized the characteristics of biochar, the interactions with various soil contaminants, and the effects on soil quality, soil productivity, and carbon sequestration. Relatively limited attention has been focused on the effects of biochar amendment on plant growth in problem soils. As a result, a comprehensive review of literature in the Web of Science was conducted with a focus on the effects of biochar amendment on plant growth in problems soils. The review is intended to present an overview about problem soils, biochars as functional materials for soil amendment, how amended biochars interact with soils, soil microbes, and plant roots in remediation of problem soil and improve plant growth. Additionally, existing knowledge gaps and future directions are discussed. Information gathered from this review suggests that biochar amendment is a viable way of improving the quality of problem soils and enhancing crop production. It is anticipated that further research on biochar amendment will increase our understanding on the interactions of biochar with components of problem soils, speed up our effort on soil remediation, and improve crop production in problem soils.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal , Produção Agrícola
8.
J Exp Bot ; 66(15): 4455-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979996

RESUMO

New modulators of the strawberry flavonoid pathway were identified through correlation network analysis. The transcriptomes of red, ripe fruit from two parental lines and 14 of their progeny were compared, and uncharacterized transcripts matching the expression patterns of known flavonoid-pathway genes were identified. Fifteen transcripts corresponded with putative transcription factors, and several of these were examined experimentally using transient expression in developing fruits. The results suggest that two of the newly-identified regulators likely contribute to discrete nodes of the flavonoid pathway. One increases only LEUCOANTHOCYANIDIN REDUCTASE (LAR) and FLAVONOL 3'-HYDROXYLASE (F3'H) transcript accumulation upon overexpression. Another affects LAR and FLAVONOL SYNTHASE (FLS) after overexpression. The third putative transcription factor appears to be a universal regulator of flavonoid-pathway genes, as many pathway transcripts decrease in abundance when this gene is silenced. This report demonstrates that such systems-level approaches may be especially powerful when connected to an effective transient expression system, helping to provide rapid and strong evidence of gene function in key fruit-ripening processes.


Assuntos
Flavonoides/metabolismo , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Flavonoides/genética , Fragaria/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Poliploidia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA