Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
JCO Precis Oncol ; 8: e2300454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591867

RESUMO

PURPOSE: The National Cancer Institute Molecular Analysis for Therapy Choice trial is a signal-finding genomically driven platform trial that assigns patients with any advanced refractory solid tumor, lymphoma, or myeloma to targeted therapies on the basis of next-generation sequencing results. Subprotocol E evaluated osimertinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, in patients with EGFR mutations. METHODS: Eligible patients had EGFR mutations (T790M or rare activating) and received osimertinib 80 mg once daily. Patients with lung cancer with EGFR T790M were excluded. The primary end point was objective response rate (ORR), and the secondary end points were 6-month progression-free survival (PFS), overall survival, and toxicity. RESULTS: A total of 19 patients were enrolled: 17 were evaluable for toxicity and 13 for efficacy. The median age of the 13 included in the efficacy analysis was 63 years, 62% had Eastern Cooperative Oncology Group performance status 1, and 31% received >three previous systemic therapies. The most common tumor type was brain cancers (54%). The ORR was 15.4% (n = 2 of 13; 90% CI, 2.8 to 41.0) and 6-month PFS was 16.7% (90% CI, 0 to 34.4). The two confirmed RECIST responses were observed in a patient with neuroendocrine carcinoma not otherwise specified (EGFR exon 20 S768T and exon 18 G719C mutation) and a patient with low-grade epithelial carcinoma of the paranasal sinus (EGFR D770_N771insSVD). The most common (>20%) treatment-related adverse events were diarrhea, thrombocytopenia, and maculopapular rash. CONCLUSION: In this pretreated cohort, osimertinib did not meet the prespecified end point threshold for efficacy, but responses were seen in a neuroendocrine carcinoma with an EGFR exon 20 S768T and exon 18 G719C mutation and an epithelial carcinoma with an EGFR D770_N771insSVD mutation. Osimertinib was well tolerated and had a safety profile consistent with previous studies.


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Carcinoma Neuroendócrino , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Estados Unidos , Humanos , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , National Cancer Institute (U.S.) , Antineoplásicos/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Mutação , Carcinoma Neuroendócrino/tratamento farmacológico
2.
Future Oncol ; 20(15): 969-980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38095056

RESUMO

After disease progression on EGFR tyrosine kinase inhibitor (TKI) therapy, patients with EGFR-mutated NSCLC who are then treated with platinum-based chemotherapy (PBC) obtain only limited clinical benefit with transient responses. Therapies with greater efficacy and tolerable safety profiles are needed in this setting. The receptor tyrosine kinase HER3 is widely expressed in NSCLC, and increased expression is associated with poor treatment outcomes. In the U31402-A-U102 phase I trial, HER3-DXd showed promising antitumor activity with manageable safety in heavily pre-treated patients with EGFR-mutated NSCLC across a range of tumor HER3 expression levels and EGFR TKI resistance mechanisms. HERTHENA-Lung02 is the first phase III trial to evaluate the safety and efficacy of HER3-DXd versus PBC in patients with progression on a third-generation EGFR TKI. Clinical Trial Registration: NCT05338970 (clinicaltrials.gov); 2021-005879-40 (EudraCT Number).


In some patients with non-small-cell lung cancer, changes (or mutations) in the DNA sequence can alter a protein called EGFR and allow tumors to grow and survive. Drugs called EGFR tyrosine kinase inhibitors (EGFR TKIs for short) are used to treat these tumors by interfering with the abnormal EGFR protein. Treatment with these drugs can work well at first, but some tumors never respond, and for tumors that do respond, the cancer eventually becomes resistant to the EGFR TKI and the drug stops working. Platinum-based chemotherapy is often prescribed after an EGFR TKI stops working; however, platinum-based chemotherapy can provide only temporary control of the tumor growth. Most patients with non-small-cell lung cancer have a protein called HER3 on the surface of their tumor cells. A new drug candidate called patritumab deruxtecan (HER3-DXd) finds tumor cells and attaches to the HER3 protein on their surface. HER3-DXd then moves inside the cancer cells, where a novel antitumor payload is released and kills the tumor cells. This article describes the phase III clinical trial HERTHENA-Lung02 (NCT05338970) that compares the benefit of HER3-DXd to platinum-based chemotherapy for patients who have non-small-cell lung cancer with the abnormal EGFR protein and whose disease stopped responding or never responded to EGFR TKI therapy.


Assuntos
Anticorpos Monoclonais Humanizados , Camptotecina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ensaios Clínicos Fase III como Assunto , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/efeitos adversos
3.
JTO Clin Res Rep ; 4(12): 100607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38124791

RESUMO

Introduction: Patients with EGFR-mutant NSCLC have a high incidence of brain metastases. The EGFR-directed tyrosine kinase inhibitor osimertinib has intracranial activity, making the role of local central nervous system (CNS)-directed therapies, such as radiation and surgery, less clear. Methods: Patients with EGFR-mutant NSCLC and brain metastases who received osimertinib as initial therapy after brain metastasis diagnosis were included. Individual lesion responses were assessed using adapted RANO-BM criteria. CNS progression and local progression of brain metastasis from osimertinib start were analyzed using cumulative incidence treating death as a competing risk. Overall survival was estimated using Kaplan-Meier methodology. Results: There were 36 patients who had a median interval from brain metastasis diagnosis to first-line osimertinib initiation of 25 days. In total, 136 previously untreated brain metastases were tracked from baseline. Overall, 105 lesions (77.2%) had complete response and 31 had partial response reflecting best objective response of 100%. Best response occurred at a median of 96 days (range: 28-1113 d) from baseline magnetic resonance imaging. This reflects a best objective response rate of 100%. Two-year overall survival was 80%. CNS progression rates at 1-, 2-, and 3-years post-osimertinib were 21%, 32%, and 41%, respectively. Lesion-level local failure was estimated to be 0.7% and 4.7% at 1- and 2-years post-osimertinib, respectively. No clinicodemographic factors including brain metastasis number were associated with post-osimertinib progression. Conclusions: Intracranial response to osimertinib is excellent for patients with EGFR-mutant NSCLC with de novo, previously untreated brain metastases. Very low local failure rates support a strategy of upfront osimertinib alone in selected patients.

4.
Cancer Discov ; 13(11): 2306-2309, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909090

RESUMO

SUMMARY: The landscape of neoadjuvant immune-checkpoint blockade for resectable non-small cell lung cancer has become an exciting area of clinical and translational exploration. Cascone and colleagues present a platform study of one cycle of novel immunomodulatory agents prior to surgical resection, offering a unique opportunity to perform translational biomarker studies, though many questions remain regarding the ultimate application to a broader patient population. See related article by Cascone et al., p. 2394 (1).


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Terapia Neoadjuvante , Antineoplásicos Imunológicos/uso terapêutico , Estadiamento de Neoplasias
5.
J Clin Oncol ; 41(35): 5363-5375, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689979

RESUMO

PURPOSE: Patritumab deruxtecan, or HER3-DXd, is an antibody-drug conjugate consisting of a fully human monoclonal antibody to human epidermal growth factor receptor 3 (HER3) attached to a topoisomerase I inhibitor payload via a stable tetrapeptide-based cleavable linker. We assessed the efficacy and safety of HER3-DXd in patients with epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC). METHODS: This phase II study (ClinicalTrials.gov identifier: NCT04619004) was designed to evaluate HER3-DXd in patients with advanced EGFR-mutated NSCLC previously treated with EGFR tyrosine kinase inhibitor (TKI) therapy and platinum-based chemotherapy (PBC). Patients received HER3-DXd 5.6 mg/kg intravenously once every 3 weeks or an uptitration regimen (3.2 → 4.8 → 6.4 mg/kg). The primary end point was confirmed objective response rate (ORR; RECIST 1.1) by blinded independent central review (BICR), with a null hypothesis of 26.4% on the basis of historical data. RESULTS: Enrollment into the uptitration arm closed early on the basis of a prespecified benefit-risk assessment of data from the phase I U31402-A-U102 trial. In total, 225 patients received HER3-DXd 5.6 mg/kg once every 3 weeks. As of May 18, 2023, median study duration was 18.9 (range, 14.9-27.5) months. Confirmed ORR by BICR was 29.8% (95% CI, 23.9 to 36.2); median duration of response, 6.4 months; median progression-free survival, 5.5 months; and median overall survival, 11.9 months. The subgroup of patients with previous osimertinib and PBC had similar outcomes. Efficacy was observed across a broad range of pretreatment tumor HER3 membrane expression levels and across diverse mechanisms of EGFR TKI resistance. In patients with nonirradiated brain metastases at baseline (n = 30), the confirmed CNS ORR by BICR per CNS RECIST was 33.3% (95% CI, 17.3 to 52.8). The safety profile (National Cancer Institute Common Terminology Criteria for Adverse Events v5.0) was manageable and tolerable, consistent with previous observations. CONCLUSION: After tumor progression with EGFR TKI therapy and PBC in patients with EGFR-mutated NSCLC, HER3-DXd once every 3 weeks demonstrated clinically meaningful efficacy with durable responses, including in CNS metastases. A phase III trial in EGFR-mutated NSCLC after progression on an EGFR TKI is ongoing (HERTHENA-Lung02; ClinicalTrials.gov identifier: NCT05338970).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Platina/uso terapêutico , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases/efeitos adversos
6.
Sci Transl Med ; 15(707): eadf7006, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531417

RESUMO

In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias da Próstata , Fatores de Transcrição SOXB1 , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Adenocarcinoma/patologia , Regulação para Baixo , Neoplasias Pulmonares/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Proteína Exportina 1
7.
Nat Commun ; 14(1): 4980, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591896

RESUMO

Up to 50% of patients with non-small cell lung cancer (NSCLC) develop brain metastasis (BM), yet the study of BM genomics has been limited by tissue access, incomplete clinical data, and a lack of comparison with paired extracranial specimens. Here we report a cohort of 233 patients with resected and sequenced (MSK-IMPACT) NSCLC BM and comprehensive clinical data. With matched samples (47 primary tumor, 42 extracranial metastatic), we show CDKN2A/B deletions and cell cycle pathway alterations to be enriched in the BM samples. Meaningful clinico-genomic correlations are noted, namely EGFR alterations in leptomeningeal disease (LMD) and MYC amplifications in multifocal regional brain progression. Patients who developed early LMD frequently have had uncommon, multiple, and persistently detectable EGFR driver mutations. The distinct mutational patterns identified in BM specimens compared to other tissue sites suggest specific biologic underpinnings of intracranial progression.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Genômica , Neoplasias Encefálicas/genética , Receptores ErbB/genética
8.
Future Oncol ; 19(19): 1319-1329, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37212796

RESUMO

Limited treatment options exist for EGFR-mutated NSCLC that has progressed after EGFR TKI and platinum-based chemotherapy. HER3 is highly expressed in EGFR-mutated NSCLC, and its expression is associated with poor prognosis in some patients. Patritumab deruxtecan (HER3-DXd) is an investigational, potential first-in-class, HER3-directed antibody-drug conjugate consisting of a HER3 antibody attached to a topoisomerase I inhibitor payload via a tetrapeptide-based cleavable linker. In an ongoing phase I study, HER3-DXd demonstrated promising antitumor activity and a tolerable safety profile in patients with EGFR-mutated NSCLC, with or without identified EGFR TKI resistance mechanisms, providing proof of concept of HER3-DXd. HERTHENA-Lung01 is a global, registrational, phase II trial further evaluating HER3-DXd in previously treated advanced EGFR-mutated NSCLC. Clinical Trial Registration: NCT04619004 (ClinicalTrials.gov); 2020-000730-17 (EudraCT).


This article describes a clinical trial of a new drug to treat non-small-cell lung cancer. About a third of patients with non-small-cell lung cancer have tumors with changes (mutations) in a gene called EGFR, which cause tumors to grow. These patients are treated with EGFR inhibitors and chemotherapy, both of which can stop the tumor from growing for a period of time. When these treatments stop working, new and effective treatments are needed. Most non-small-cell lung cancer tumors have a protein called HER3 on the surface of their cells. Patritumab deruxtecan (HER3-DXd) is a new drug candidate that uses HER3 to get chemotherapy inside tumor cells. In an earlier clinical trial for patients with lung cancer whose disease had grown after multiple treatments, HER3-DXd often shrank tumors or stopped them from growing. The side effects of HER3-DXd were tolerable. The clinical trial described in this publication, HERTHENA-Lung01 (NCT04619004), is testing HER3-DXd in a larger group of patients with non-small-cell lung cancer that has activating mutations in the EGFR gene and for whom previous treatments have stopped working. The results of this study will help doctors and regulators decide if HER3-DXd should be approved and used for patients with non-small-cell lung cancer with EGFR mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/genética , Receptor ErbB-3/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Mutação , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase I como Assunto
9.
Clin Cancer Res ; 29(11): 2123-2130, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913537

RESUMO

PURPOSE: The uncommon EGFR exon 19 deletion (ex19del), L747_A750>P, demonstrates reduced sensitivity to osimertinib compared with the common ex19del, E746_A750del in preclinical models. The clinical efficacy of osimertinib in patients with non-small cell lung cancer harboring L747_A750>P and other uncommon ex19dels is not known. EXPERIMENTAL DESIGN: The AACR GENIE database was interrogated to characterize the frequency of individual ex19dels relative to other variants, and a multicenter retrospective cohort was used to compare clinical outcomes for patients with tumors harboring E746_A750del, L747_A750>P, and other uncommon ex19dels who received osimertinib in the first line (1L) or in second or later lines of therapy and were T790M+ (≥2L). RESULTS: ex19dels comprised 45% of EGFR mutations, with 72 distinct variants ranging in frequency from 28.1% (E746_A750del) to 0.03%, with L747_A750>P representing 1.8% of the EGFR mutant cohort. In our multi-institutional cohort (N = 200), E746_A750del was associated with significantly prolonged progression-free survival (PFS) with 1L osimertinib versus L747_A750>P [median 21.3 months (95% confidence interval, 17.0-31.7) vs. 11.7 months (10.8-29.4); adjusted HR 0.52 (0.28-0.98); P = 0.043]. Osimertinib efficacy in patients with other uncommon ex19dels varied on the basis of the specific mutation present. CONCLUSIONS: The ex19del L747_A750>P is associated with inferior PFS compared with the common E746_A750del mutation in patients treated with 1L osimertinib. Understanding differences in osimertinib efficacy among EGFR ex19del subtypes could alter management of these patients in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Estudos Retrospectivos , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Anilina/uso terapêutico , Deleção de Sequência , Éxons
10.
Clin Cancer Res ; 29(8): 1423-1428, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36729110

RESUMO

PURPOSE: Primary and acquired resistance to osimertinib remain significant challenges for patients with EGFR-mutant lung cancers. Acquired EGFR alterations such as EGFR T790M or C797S mediate resistance to EGFR tyrosine kinase inhibitors (TKI) and combination therapy with dual EGFR TKIs may prevent or reverse on-target resistance. PATIENTS AND METHODS: We conducted two prospective, phase I/II trials assessing combination osimertinib and dacomitinib to address on-target resistance in the primary and acquired resistance settings. In the initial therapy study, patients received dacomitinib and osimertinib in combination as initial therapy. In the acquired resistance trial, dacomitinib with or without osimertinib was administered to patients with EGFR-mutant lung cancers with disease progression on osimertinib alone and evidence of an acquired EGFR second-site mutation. RESULTS: Cutaneous toxicities occurred in 93% (any grade) of patients and diarrhea in 72% (any grade) with the combination. As initial therapy, the overall response to the combination was 73% [95% confidence interval (CI), 50%-88%]. No acquired secondary alterations in EGFR were observed in any patients at progression. In the acquired resistance setting, the overall response was 14% (95% CI, 1%-58%). CONCLUSIONS: We observed no acquired secondary EGFR alterations with dual inhibition of EGFR as up-front treatment, but this regimen was associated with greater toxicity. The combination was not effective in reversing acquired resistance after development of a second-site acquired EGFR alteration. Our study highlights the need to develop better strategies to address on-target resistance in patients with EGFR-mutant lung cancers.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Mutação , Estudos Prospectivos , Inibidores de Proteínas Quinases/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Compostos de Anilina/farmacologia
11.
J Thorac Cardiovasc Surg ; 165(5): 1682-1693.e3, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528430

RESUMO

OBJECTIVE: Targeted therapy improves outcomes in patients with advanced-stage non-small cell lung cancer (NSCLC) and in the adjuvant setting, but data on its use before surgery are limited. We sought to investigate the safety and feasibility of preoperative targeted therapy in patients with operable NSCLC. METHODS: We retrospectively reviewed 51 patients with clinical stage I to III NSCLC who received targeted therapy, alone or in combination with chemotherapy, before surgical resection with curative intent, treated from 2004 to 2021. The primary outcome was the safety and feasibility of preoperative targeted therapy; secondary outcomes included objective response rate, major pathologic response (defined as ≤10% viable tumor) rate, recurrence-free survival (RFS), and overall survival. RESULTS: Of the 51 patients included, 46 had an activating epidermal growth factor receptor gene alteration and 5 had an anaplastic lymphoma kinase fusion. Overall, 37 of 46 evaluable patients experienced at least 1 adverse event before surgery; however, only 3 patients experienced a grade 3 or 4 event. The objective response rate was 38% (17/45) for all evaluable patients and 44% (14/32) for patients with clinical stage II or III disease. The major pathologic response rate was 20% (9/44); 2 patients had a complete pathologic response. Median RFS was 3.8 years (95% CI, 2.8 to not reached). Targeted therapy alone was associated with better RFS than combination therapy (P = .009) in patients with clinical stage II or III disease. CONCLUSIONS: Preoperative targeted therapy was well tolerated and associated with good outcomes, with or without induction chemotherapy. In addition, radiographic response and pathologic response were strongly correlated.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Terapia Combinada , Terapia Neoadjuvante/efeitos adversos , Estadiamento de Neoplasias
12.
Cancer Discov ; 13(1): 98-113, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36264123

RESUMO

MET-inhibitor and EGFR tyrosine kinase inhibitor (EGFR-TKI) combination therapy could overcome acquired MET-mediated osimertinib resistance. We present the final phase Ib TATTON (NCT02143466) analysis (Part B, n = 138/Part D, n = 42) assessing oral savolitinib 600 mg/300 mg once daily (q.d.) + osimertinib 80 mg q.d. in patients with MET-amplified, EGFR-mutated (EGFRm) advanced non-small cell lung cancer (NSCLC) and progression on prior EGFR-TKI. An acceptable safety profile was observed. In Parts B and D, respectively, objective response rates were 33% to 67% and 62%, and median progression-free survival (PFS) was 5.5 to 11.1 months and 9.0 months. Increased antitumor activity may occur with MET copy number ≥10. EGFRm circulating tumor DNA clearance on treatment predicted longer PFS in patients with detectable baseline ctDNA, while acquired resistance mechanisms to osimertinib + savolitinib were mediated by MET, EGFR, or KRAS alterations. SIGNIFICANCE: The savolitinib + osimertinib combination represents a promising therapy in patients with MET-amplified/overexpressed, EGFRm advanced NSCLC with disease progression on a prior EGFR-TKI. Acquired resistance mechanisms to this combination include those via MET, EGFR, and KRAS. On-treatment ctDNA dynamics can predict clinical outcomes and may provide an opportunity to inform earlier decision-making. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Compostos de Anilina/uso terapêutico , Receptores ErbB
13.
J Thorac Oncol ; 18(4): 463-475, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36494075

RESUMO

INTRODUCTION: Preferred first-line treatment for patients with metastatic EGFR-mutant lung cancer is osimertinib, yet it is not known whether patient outcomes may be improved by identifying and intervening on molecular markers associated with therapeutic resistance. METHODS: All patients with metastatic EGFR-mutant lung cancer treated with first-line osimertinib at the Memorial Sloan Kettering Cancer Center (n = 327) were identified. Available pretreatment and postprogression tumor samples underwent targeted gene panel sequencing and mutational signature analysis using SigMA algorithm. Progression-free survival (PFS) and overall survival were estimated using the Kaplan-Meier method. RESULTS: Using multivariate analysis, baseline atypical EGFR (median PFS = 5.8 mo, p < 0.001) and concurrent TP53/RB1 alterations (median PFS = 10.5 mo, p = 0.015) were associated with shorter PFS on first-line osimertinib. Of 95 patients with postprogression biopsies, acquired resistance mechanisms were identified in 52% (off-target, n = 24; histologic transformation, n = 14; on-target, n = 12), with MET amplification (n = 9), small cell lung transformation (n = 7), and acquired EGFR amplification (n = 7), the most frequently identified mechanisms. Although there was no difference in postprogression survival on the basis of identified resistance (p = 0.07), patients with subsequent second-line therapy tailored to postprogression biopsy results had improved postprogression survival (hazard ratio = 0.09, p = 0.006). The paired postprogression tumors had higher tumor mutational burden (p = 0.008) and further dominant APOBEC mutational signatures (p = 0.07) compared with the pretreatment samples. CONCLUSIONS: Patients with EGFR-mutant lung cancer treated with first-line osimertinib have improved survival with treatment adaptation on the basis of identified mechanisms of resistance at time of progression using tissue-based genomic analysis. Further survival gains may be achieved using risk-based treatment adaptation of pretreatment genomic alterations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
14.
Nat Med ; 28(11): 2353-2363, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357680

RESUMO

Circulating tumor DNA (ctDNA) sequencing guides therapy decisions but has been studied mostly in small cohorts without sufficient follow-up to determine its influence on overall survival. We prospectively followed an international cohort of 1,127 patients with non-small-cell lung cancer and ctDNA-guided therapy. ctDNA detection was associated with shorter survival (hazard ratio (HR), 2.05; 95% confidence interval (CI), 1.74-2.42; P < 0.001) independently of clinicopathologic features and metabolic tumor volume. Among the 722 (64%) patients with detectable ctDNA, 255 (23%) matched to targeted therapy by ctDNA sequencing had longer survival than those not treated with targeted therapy (HR, 0.63; 95% CI, 0.52-0.76; P < 0.001). Genomic alterations in ctDNA not detected by time-matched tissue sequencing were found in 25% of the patients. These ctDNA-only alterations disproportionately featured subclonal drivers of resistance, including RICTOR and PIK3CA alterations, and were associated with short survival. Minimally invasive ctDNA profiling can identify heterogeneous drivers not captured in tissue sequencing and expand community access to life-prolonging therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Humanos , DNA Tumoral Circulante/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
16.
JCO Precis Oncol ; 6: e2200088, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35952318

RESUMO

PURPOSE: The identification of novel oncogenic driver alterations and novel mechanisms of acquired resistance (AR) is the key for further development of personalized therapy. The current study investigates the potential role of YES1 amplification as a primary driver of tumorigenesis and of YES1/YAP1 amplifications as mediators of AR to ALK and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). METHODS: Models of ectopic expression were established and characterized for YES1 and YAP1 in human bronchial epithelial cells and ALK fusion-positive (ALK+) and EGFR-mutant lung adenocarcinoma cell lines. MSK-IMPACT data for all lung adenocarcinoma cases and for ALK and EGFR TKI AR cases were surveyed for YES1 and YAP1 amplification. RESULTS: We report response to SRC family kinase (SFK) inhibition in a patient whose lung cancer exhibited YES1 amplification, without any well-established primary driver alteration, suggesting that YES1 amplification can also function as a primary oncogenic driver. To investigate the possibility of YES1 as a primary driver in tumorigenesis, we established preclinical models of YES1 overexpression using human bronchial epithelial cells and normal human breast epithelial cells. We showed that YES1 overexpression conferred sensitivity to SFK TKIs and promoted EGF-independent growth in a YAP1-dependent manner. Analysis of clinical genomic sequencing data from cases of AR to EGFR and ALK inhibitors revealed acquired amplification of YAP1 in four cases. EGFR-mutant and ALK fusion-positive cells overexpressing YES1 or YAP1 were resistant to EGFR and ALK TKIs, respectively, but were sensitive to dual inhibition of the primary driver and YES1. CONCLUSION: Our results demonstrate the therapeutic potential of SFK inhibition in primary tumorigenesis and AR driven by YES1/YAP1 signaling.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Quinase do Linfoma Anaplásico/genética , Carcinogênese , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas de Sinalização YAP , Quinases da Família src/uso terapêutico
17.
Clin Cancer Res ; 28(21): 4702-4713, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792876

RESUMO

PURPOSE: RB1 mutations and loss of retinoblastoma (Rb) expression represent consistent but not entirely invariable hallmarks of small cell lung cancer (SCLC). The prevalence and characteristics of SCLC retaining wild-type Rb are not well-established. Furthermore, the performance of targeted next-generation sequencing (NGS) versus immunohistochemistry for Rb assessment is not well-defined. EXPERIMENTAL DESIGN: A total of 208 clinical SCLC samples were analyzed by comprehensive targeted NGS, covering all exons of RB1, and Rb IHC. On the basis of established coordination of Rb/p16/cyclinD1 expression, p16-high/cyclinD1-low profile was used as a marker of constitutive Rb deficiency. RESULTS: Fourteen of 208 (6%) SCLC expressed wild-type Rb, accompanied by a unique p16-low/cyclinD1-high profile supporting Rb proficiency. Rb-proficient SCLC was associated with neuroendocrine-low phenotype, combined SCLC with non-SCLC (NSCLC) histology and aggressive behavior. These tumors exclusively harbored CCND1 amplification (29%), and were markedly enriched in CDKN2A mutations (50%) and NSCLC-type alterations (KEAP1, STK11, FGFR1). The remaining 194 of 208 SCLC were Rb-deficient (p16-high/cyclinD1-low), including 184 cases with Rb loss (of which 29% lacked detectable RB1 alterations by clinical NGS pipeline), and 10 cases with mutated but expressed Rb. CONCLUSIONS: This is the largest study to date to concurrently analyze Rb by NGS and IHC in SCLC, identifying a 6% rate of Rb proficiency. Pathologic-genomic data implicate NSCLC-related progenitors as a putative source of Rb-proficient SCLC. Consistent upstream Rb inactivation via CDKN2A/p16↓ and CCND1/cyclinD1↑ suggests the potential utility of CDK4/6 inhibitors in this aggressive SCLC subset. The study also clarifies technical aspects of Rb status determination in clinical practice, highlighting the limitations of exon-only sequencing for RB1 interrogation. See related commentary by Mahadevan and Sholl, p. 4603.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias da Retina , Retinoblastoma , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Imuno-Histoquímica , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Genômica , Neoplasias Pulmonares/patologia
18.
JTO Clin Res Rep ; 3(6): 100328, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35637759

RESUMO

Introduction: This multicenter review evaluated the efficacy and safety of osimertinib dose escalation for central nervous system (CNS) progression developing on osimertinib 80 mg in EGFR-mutant NSCLC. Methods: Retrospective review identified 105 patients from eight institutions with advanced EGFR-mutant NSCLC treated with osimertinib 160 mg daily between October 2013 and January 2020. Radiographic responses were clinically assessed, and Kaplan-Meier analyses were used. We defined CNS disease control as the interval from osimertinib 160 mg initiation to CNS progression or discontinuation of osimertinib 160 mg. Results: Among 105 patients treated with osimertinib 160 mg, 69 were escalated for CNS progression, including 24 treated with dose escalation alone (cohort A), 34 who received dose-escalated osimertinib plus concurrent chemotherapy and/or radiation (cohort B), and 11 who received osimertinib 160 mg without any prior 80 mg exposure. The median duration of CNS control was 3.8 months (95% confidence interval [CI], 1.7-5.8) in cohort A, 5.1 months (95% CI, 3.1-6.5) in cohort B, and 4.2 months (95% CI 1.6-not reached) in cohort C. Across all cohorts, the median duration of CNS control was 6.0 months (95% CI, 5.1-9.0) in isolated leptomeningeal progression (n = 27) and 3.3 months (95% CI, 1.0-3.1) among those with parenchymal-only metastases (n = 23). Patients on osimertinib 160 mg experienced no severe or unexpected side effects. Conclusion: Among patients with EGFR-mutant NSCLC experiencing CNS progression on osimertinib 80 mg daily, dose escalation to 160 mg provided modest benefit with CNS control lasting approximately 3 to 6 months and seemed more effective in patients with isolated leptomeningeal CNS progression.

19.
Sci Transl Med ; 14(638): eabc7480, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353542

RESUMO

Residual cancer cells that survive drug treatments with targeted therapies act as a reservoir from which eventual resistant disease emerges. Although there is great interest in therapeutically targeting residual cells, efforts are hampered by our limited knowledge of the vulnerabilities existing in this cell state. Here, we report that diverse oncogene-targeted therapies, including inhibitors of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), KRAS, and BRAF, induce DNA double-strand breaks and, consequently, ataxia-telangiectasia mutated (ATM)-dependent DNA repair in oncogene-matched residual tumor cells. This DNA damage response, observed in cell lines, mouse xenograft models, and human patients, is driven by a pathway involving the activation of caspases 3 and 7 and the downstream caspase-activated deoxyribonuclease (CAD). CAD is, in turn, activated through caspase-mediated degradation of its endogenous inhibitor, ICAD. In models of EGFR mutant non-small cell lung cancer (NSCLC), tumor cells that survive treatment with small-molecule EGFR-targeted therapies are thus synthetically dependent on ATM, and combined treatment with an ATM kinase inhibitor eradicates these cells in vivo. This led to more penetrant and durable responses in EGFR mutant NSCLC mouse xenograft models, including those derived from both established cell lines and patient tumors. Last, we found that rare patients with EGFR mutant NSCLC harboring co-occurring, loss-of-function mutations in ATM exhibit extended progression-free survival on first generation EGFR inhibitor therapy relative to patients with EGFR mutant NSCLC lacking deleterious ATM mutations. Together, these findings establish a rationale for the mechanism-based integration of ATM inhibitors alongside existing targeted therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , DNA , Reparo do DNA , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Neoplasia Residual
20.
Cancer Discov ; 12(4): 1002-1021, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078784

RESUMO

The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib has significantly prolonged progression-free survival (PFS) in patients with EGFR-mutant lung cancer, including those with brain metastases. However, despite striking initial responses, osimertinib-treated patients eventually develop lethal metastatic relapse, often to the brain. Although osimertinib-refractory brain relapse is a major clinical challenge, its underlying mechanisms remain poorly understood. Using metastatic models of EGFR-mutant lung cancer, we show that cancer cells expressing high intracellular S100A9 escape osimertinib and initiate brain relapses. Mechanistically, S100A9 upregulates ALDH1A1 expression and activates the retinoic acid (RA) signaling pathway in osimertinib-refractory cancer cells. We demonstrate that the genetic repression of S100A9, ALDH1A1, or RA receptors (RAR) in cancer cells, or treatment with a pan-RAR antagonist, dramatically reduces brain metastasis. Importantly, S100A9 expression in cancer cells correlates with poor PFS in osimertinib-treated patients. Our study, therefore, identifies a novel, therapeutically targetable S100A9-ALDH1A1-RA axis that drives brain relapse. SIGNIFICANCE: Treatment with the EGFR TKI osimertinib prolongs the survival of patients with EGFR-mutant lung cancer; however, patients develop metastatic relapses, often to the brain. We identified a novel intracellular S100A9-ALDH1A1-RA signaling pathway that drives lethal brain relapse and can be targeted by pan-RAR antagonists to prevent cancer progression and prolong patient survival. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Família Aldeído Desidrogenase 1 , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Encéfalo/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Retinal Desidrogenase/genética , Transdução de Sinais , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA