Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.613
Filtrar
1.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718570

RESUMO

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Assuntos
Apigenina , Transição Epitelial-Mesenquimal , Glucose , Histonas , Epitélio Pigmentado da Retina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Apigenina/farmacologia , Acetilação/efeitos dos fármacos , Humanos , Glucose/metabolismo , Glucose/toxicidade , Histonas/metabolismo , Linhagem Celular , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/tratamento farmacológico , Proteína p300 Associada a E1A/metabolismo , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética
2.
Mater Horiz ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745534

RESUMO

Conventional antisolvents such as chlorobenzene and benzotrifluoride are highly toxic and volatile, and therefore not preferred for large-scale fabrication. As such, green antisolvents are favored for the eco-friendly fabrication of perovskite films. This review primarily discusses the impact of various green antisolvents on the fabrication of thin perovskite films and analyzes the main chemical characteristics of these green antisolvents. It also interprets the impact of green antisolvent treatment on crystal growth and nucleation crystallization mechanisms. It introduces the effective fabrication of large-area devices using green antisolvents and analyzes the mechanisms by which green antisolvents enhance device stability. Subsequently, several green antisolvents capable of preparing highly stable and efficient devices are listed. Finally, we outline the key challenges and future prospects of antisolvent treatment. This review paves the way for green fabrication of industrial perovskite solar cells.

3.
World J Gastrointest Oncol ; 16(5): 1965-1994, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764819

RESUMO

BACKGROUND: Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM: To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS: Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS: Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION: YGS has the effect of anti-gastric cancer and immune regulation.

4.
Sci Rep ; 14(1): 10577, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719920

RESUMO

Cold hypersensitivity in the hands and feet (CHHF) is a protective or predisposing factor for many diseases; however, the relationship between CHHF and erectile dysfunction (ED) remains unclear. We aimed to investigate associations between CHHF and ED among young men of Southeast Asian origin. In this cross-sectional study, sexually active Taiwanese men aged 20-40 years were enrolled via an online questionnaire comprising general demographic information, comorbidities, subjective thermal sensations of their hands and feet in the past 6 months, and their erectile function using the International Index of Erectile Function-5 (IIEF-5). Participants who reported cold sensation of hands and feet were classified to have CHHF; those with IIEF-5 score ≤ 21 were considered to have ED. Total 54.2% and 27.9% of participants had ED and CHHF, respectively. Men with CHHF were significantly younger, had lower body mass index and IIEF-5 scores (p < 0.001), and a lower prevalence of diabetes mellitus (p = 0.033) along with higher prevalence of ED, psychiatric disorders, and insomnia (p < 0.001). After adjusting for predisposing factors of ED, CHHF (odds ratio 1.410, 95% confidence interval 1.159-1.714; p = 0.001) remained an independent predictor of ED. Thus, CHHF is independently associated with ED, affecting more than a quarter of young Taiwanese men. Autonomic dysregulation and subclinical endothelial dysfunction may be common pathophysiologies of CHHF and ED.


Assuntos
Disfunção Erétil , , Mãos , Humanos , Masculino , Disfunção Erétil/epidemiologia , Disfunção Erétil/etiologia , Taiwan/epidemiologia , Adulto , Estudos Transversais , Adulto Jovem , Mãos/fisiopatologia , Pé/fisiopatologia , Síndromes Periódicas Associadas à Criopirina/epidemiologia , Síndromes Periódicas Associadas à Criopirina/complicações , Inquéritos e Questionários , Prevalência , Temperatura Baixa/efeitos adversos , Fatores de Risco
5.
Int J Biol Macromol ; 269(Pt 2): 131976, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697427

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal lung disease characterized by progressive lung scarring. This study aims to elucidate the role of the E3 ubiquitin ligase NEDD4 in the ubiquitination of YY1 and its subsequent impact on TAB1 transcription, revealing a possible molecular mechanism in the development of IPF. Through bioinformatics analysis and both in vitro and in vivo experiments, we observed differential expression levels of NEDD4 and YY1 between normal and IPF samples, identifying NEDD4 as an upstream E3 ubiquitin ligase of YY1. Furthermore, binding sites for the transcription factor YY1 on the promoter region of TAB1 were discovered, indicating a direct interaction. In vitro experiments using HEPF cells showed that NEDD4 mediates the ubiquitination and degradation of YY1, leading to suppressed TAB1 transcription, thereby inhibiting cell proliferation and fibrogenesis. These findings were corroborated by in vivo experiments in an IPF mouse model, where the ubiquitination pathway facilitated by NEDD4 attenuated IPF progression through the downregulation of YY1 and TAB1 transcription. These results suggest that NEDD4 plays a crucial role in the development of IPF by modulating YY1 ubiquitination and TAB1 transcription, providing new insights into potential therapeutic targets for treating IPF.

6.
Bioresour Technol ; : 130787, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703955

RESUMO

Slow dissolution/hydrolysis of insoluble/macromolecular organics and poor sludge filterability restrict the application potential of anaerobic membrane bioreactor (AnMBR). Bubble-free membrane microaeration was firstly proposed to overcome these obstacles in this study. The batch anaerobic digestion tests feeding insoluble starch and soluble peptone with and without microaeration showed that microaeration led to a 65.7-144.8% increase in methane production and increased critical flux of microfiltration membrane via driving the formation of large sludge flocs and the resultant improvement of sludge settleability. The metagenomic and bioinformatic analyses showed that microaeration significantly enriched the functional genes and bacteria for polysaccharide and protein hydrolysis, microaeration showed little negative effects on the functional genes involved in anaerobic metabolisms, and substrate transfer from starch to peptone significantly affected the functional genes and microbial community. This study demonstrates the dual synergism of microaeration to enhance the dissolution/hydrolysis/acidification of insoluble/macromolecular organics and sludge filterability for AnMBR application.

7.
Chem Sci ; 15(20): 7659-7666, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779171

RESUMO

The development of high-quality organic scintillators encounters challenges primarily associated with the weak X-ray absorption ability resulting from the presence of low atomic number elements. An effective strategy involves the incorporation of halogen-containing molecules into the system through co-crystal engineering. Herein, we synthesized a highly fluorescent dye, 2,5-di(4-pyridyl)thiazolo[5,4-d]thiazole (Py2TTz), with a fluorescence quantum yield of 12.09%. Subsequently, Py2TTz was co-crystallized with 1,4-diiodotetrafluorobenzene (I2F4B) and 1,3,5-trifluoro-2,4,6-triiodobenzene (I3F3B) obtaining Py2TTz-I2F4 and Py2TTz-I3F3. Among them, Py2TTz-I2F4 exhibited exceptional scintillation properties, including an ultrafast decay time (1.426 ns), a significant radiation luminescence intensity (146% higher than Bi3Ge4O12), and a low detection limit (70.49 nGy s-1), equivalent to 1/78th of the detection limit for medical applications (5.5 µGy s-1). This outstanding scintillation performance can be attributed to the formation of halogen-bonding between I2F4B and Py2TTz. Theoretical calculations and single-crystal structures demonstrate the formation of halogen-bond-induced rather than π-π-induced charge-transfer cocrystals, which not only enhances the X-ray absorption ability and material conductivity under X-ray exposure, but also constrains molecular vibration and rotation, and thereby reducing non-radiative transition rate and sharply increasing its fluorescence quantum yields. Based on this, the flexible X-ray film prepared based on Py2TTz-I2F4 achieved an ultrahigh spatial resolution of 26.8 lp per mm, underscoring the superiority of this strategy in developing high-performance organic scintillators.

8.
mBio ; : e0061624, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771052

RESUMO

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.

9.
Nat Commun ; 15(1): 3994, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734761

RESUMO

NADPH oxidase 5 (NOX5) catalyzes the production of superoxide free radicals and regulates physiological processes from sperm motility to cardiac rhythm. Overexpression of NOX5 leads to cancers, diabetes, and cardiovascular diseases. NOX5 is activated by intracellular calcium signaling, but the underlying molecular mechanism of which - in particular, how calcium triggers electron transfer from NADPH to FAD - is still unclear. Here we capture motions of full-length human NOX5 upon calcium binding using single-particle cryogenic electron microscopy (cryo-EM). By combining biochemistry, mutagenesis analyses, and molecular dynamics (MD) simulations, we decode the molecular basis of NOX5 activation and electron transfer. We find that calcium binding to the EF-hand domain increases NADPH dynamics, permitting electron transfer between NADPH and FAD and superoxide production. Our structural findings also uncover a zinc-binding motif that is important for NOX5 stability and enzymatic activity, revealing modulation mechanisms of reactive oxygen species (ROS) production.


Assuntos
Cálcio , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , NADPH Oxidase 5 , NADP , Humanos , NADPH Oxidase 5/metabolismo , NADPH Oxidase 5/genética , NADPH Oxidase 5/química , Cálcio/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Superóxidos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo , Transporte de Elétrons , Ativação Enzimática , Sítios de Ligação
10.
Virus Res ; 345: 199400, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763300

RESUMO

PURPOSE: Previous studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have focused on factors that influence the achievement of negative conversion of viral RNA. This study aimed to investigate the effects of the genetic mutations in different SARS-CoV-2 strains on the negative conversion time (NCT) among imported cases in Hangzhou, Zhejiang Province, China, in order to provide valuable insights for developing targeted epidemic prevention guidelines. METHODS: This retrospective study involved 146 imported SARS-CoV-2 cases in Hangzhou from 8 April 2021 to 11 June 2022. We compared the SARS-CoV-2-specific indicators, clinical indexes, and NCT among the wild-type (WT), Delta, and Omicron groups. Spearman correlation analysis was used to identify the correlations of NCT with mutation types/frequencies. RESULTS: The mean age of the imported cases was 35.3 (SD: 12.3) years, with 71.92 % males and 28.08 % females. The mean cycle threshold (Ct) values of open reading frame 1ab (ORF1ab) and nucleocapsid (N) RNA were 25.17 (SD: 6.44) and 23.4 (SD: 6.76), respectively. The mutations of SARS-CoV-2 strains were mainly located in N, membrane (M), spike (S), ORF1a, ORF1b, ORF3a, ORF6, and ORF9b genes among the WT, Delta, and Omicron groups. NCT was significantly prolonged in the WT and Delta groups compared to the Omicron group. T lymphocyte, white blood cell, eosinophil, and basophil counts were dramatically higher in the WT group than the Delta group. White blood cell, red blood cell, and basophil counts were significantly lower in the Delta group than the Omicron group. Spearman correlation analysis revealed a significant correlation between the NCT of viral RNA and mutation types of viral genes of WT and Omicron strains. Additionally, NCT was markedly negatively correlated with the frequencies of five mutations in Omicron strains (ORF1b:P1223L, ORF1b:R1315C, ORF1b:T2163I, ORF3a:T223I, and ORF6:D61L). CONCLUSIONS: This study indicates that five mutations in Omicron strains (ORF1b:P1223L/R1315C/T2163I, ORF3a:T223I and ORF6:D61L) shortened NCT in imported SARS-CoV-2 cases.

11.
Sci Rep ; 14(1): 10899, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740854

RESUMO

In order to obtain the best mass spectrometry identification results for using the most appropriate methods in clinical practice, we explore the optimal pretreatment methods for different species and morphologies of filamentous fungi. 98 fungal strains were treated with formic acid sandwich method, dispersion method, extraction method, and other methods using a medium element mass spectrometer (EXS3000) as a platform. Each strain had three targets, and the identification rates and confidence differences under different pre-treatment methods were compared to evaluate the identification effects of these methods. The mass spectrometry identification rates of 98 filamentous fungi obtained after pre-treatment with formic acid sandwich method, dispersion method, and extraction method were 85.71%, 82.65%, and 75.51%, respectively. The identification rate of the formic acid sandwich method was significantly higher than the other two methods (P < 0 005) has the best identification ability and the obtained confidence is also higher than the other two methods. The use of formic acid sandwich method for mass spectrometry identification of filamentous fungi can achieve ideal identification results, which is suitable for mass spectrometry identification of filamentous fungi in conventional laboratories.


Assuntos
Fungos , Espectrometria de Massas , Fungos/isolamento & purificação , Fungos/classificação , Espectrometria de Massas/métodos , Formiatos/química , Formiatos/análise , Micoses/microbiologia , Micoses/diagnóstico , Humanos
12.
Psychol Med ; : 1-8, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738283

RESUMO

BACKGROUND: Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear. METHODS: This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design. RESULTS: Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups. CONCLUSIONS: Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.

13.
J Neuroinflammation ; 21(1): 125, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730470

RESUMO

BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos Transgênicos , Monócitos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Monócitos/metabolismo , Camundongos , Humanos , Peptídeos beta-Amiloides/metabolismo , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Idoso , Cistatinas/metabolismo , Cistatinas/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Idoso de 80 Anos ou mais , Camundongos Endogâmicos C57BL
14.
Curr Issues Mol Biol ; 46(5): 4688-4700, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785551

RESUMO

Subarachnoid hemorrhage (SAH) is a type of stroke caused by bleeding into the subarachnoid space. SAH is a medical emergency and requires prompt treatment to prevent complications such as seizures, stroke, or other brain damage. Treatment options may include surgery, medication, or a combination of both. 2-Cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), a compound with anti-inflammatory and antioxidant properties, is currently being investigated as a potential treatment for various diseases, including chronic kidney disease and pulmonary arterial hypertension. In this study, the effects of CDDO on rats subjected to SAH were evaluated. Male Sprague-Dawley rats were divided into four groups (n = 6/group): (1) control group, (2) SAH group, (3) SAH + low-dose CDDO (10 mg/kg injected into the subarachnoid space at 24 h after SAH) group, and (4) SAH + high-dose CDDO (20 mg/kg) group. CDDO improved SAH-induced poor neurological outcomes and reduced vasospasm in the basal artery following SAH. It also decreased the SAH-induced expression of proinflammatory cytokines such as TNF-α, IL-1ß, and IL-6 in both the cerebrospinal fluid and serum samples as determined by ELISA. A Western blot analysis confirmed an increase in the p-NF-κB protein level after SAH, but it was significantly decreased with CDDO intervention. Immunofluorescence staining highlighted the proliferation of microglia and astrocytes as well as apoptosis of the neuronal cells after SAH, and treatment with CDDO markedly reduced the proliferation of these glial cells and apoptosis of the neuronal cells. The early administration of CDDO after SAH may effectively mitigate neuronal apoptosis and vasospasm by suppressing inflammation.

15.
Healthcare (Basel) ; 12(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786365

RESUMO

This study investigates the impact of hospitalist system awareness, motivation, and behavior on value creation within the healthcare context of Taiwan. As population aging and the prevalence of chronic diseases continue to rise, accompanied by increased medical resource consumption, the Taiwan Ministry of Health and Welfare introduced the hospitalist system. Despite its implementation, the number of participating hospitals remains low. Using a questionnaire survey conducted from October 2021 to March 2022, data were collected from medical teams involved in the hospitalist system. A total of 324 valid questionnaires were analyzed. The results reveal that hospitalist awareness positively influences participation motivation (ß = 0.846, p < 0.001), which subsequently impacts participation behavior positively (ß = 0.888, p < 0.001). Moreover, participation behavior significantly contributes to value creation (ß = 0.869, p < 0.001), along with the direct effect of awareness (ß = 0.782, p < 0.001) on value creation. In conclusion, the successful promotion and implementation of the hospitalist system rely heavily on the support and active participation of medical staff. Effective interactions and comprehensive information dissemination are essential for maximizing healthcare value creation.

16.
World J Clin Oncol ; 15(3): 411-418, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38576596

RESUMO

BACKGROUND: The neuroendoscopic approach has the advantages of a clear operative field, convenient tumor removal, and less damage, and is the development direction of modern neurosurgery. At present, transnasal surgery for sphenoidal pituitary tumor is widely used. But it has been found in clinical practice that some patients with this type of surgery may experience post-operative nausea and vomiting and other discomforts. AIM: To explore the effect of reserved gastric tube application in the neuroendoscopic endonasal resection of pituitary tumors. METHODS: A total of 60 patients who underwent pituitary adenoma resection via the endoscopic endonasal approach were selected and randomly divided into the experimental and control groups, with 30 in each group. Experimental group: After anesthesia, a gastric tube was placed through the mouth under direct vision using a visual laryngoscope, and the fluid accumulated in the oropharynx was suctioned intermittently with low negative pressure throughout the whole process after nasal disinfection, during the operation, and when the patient recovered from anesthesia. Control group: Given the routine intraoperative care, no gastric tube was left. The number of cases of nausea/vomiting/aspiration within 24 h post-operation was counted and compared between the two groups; the scores of pharyngalgia after waking up, 6 h post-operation, and 24 h post-operation. The frequency of postoperative cerebrospinal fluid leakage and intracranial infection were compared. The hospitalization days of the two groups were statistically compared. RESULTS: The times of postoperative nausea and vomiting in the experimental group were lower than that in the control group, and the difference in the incidence of nausea was statistically significant (P < 0.05). After the patient woke up, the scores of sore throat 6 h after the operation and 24 h after operation were lower than those in the control group, and the difference was statistically significant (P < 0.05). The number of cases of postoperative cerebrospinal fluid leakage and intracranial infection was higher than that of the control group, but there was no statistically significant difference from the control group (P > 0.05). The hospitalization days of the experimental group was lower than that of the control group, and the difference was statistically significant (P < 0.05). CONCLUSION: Reserving a gastric tube in the endoscopic endonasal resection of pituitary tumors, combined with intraoperative and postoperative gastrointestinal decompression, can effectively reduce the incidence of nausea, reduce the number of vomiting and aspiration in patients, and reduce the complications of sore throat The incidence rate shortened the hospitalization days of the patients.

17.
Front Pharmacol ; 15: 1326296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572425

RESUMO

Urothelial carcinoma (UC) is a common cancer characterized by high morbidity and mortality rates. Despite advancements in treatment, challenges such as recurrence and low response rates persist. Antibody-drug conjugates (ADCs) have emerged as a promising therapeutic approach for various cancers, although their application in UC is currently limited. This review focuses on recent research regarding ADCs designed to treat UC by targeting human epidermal growth factor receptor 2 (HER2), a surface antigen expressed on tumor cells. ADCs comprise three main components: an antibody, a linker, and a cytotoxic payload. The antibody selectively binds to tumor cell surface antigens, facilitating targeted delivery of the cytotoxic drug, while linkers play a crucial role in ensuring stability and controlled release of the payload. Cleavable linkers release the drug within tumor cells, while non-cleavable linkers ensure stability during circulation. The cytotoxic payload exerts its antitumor effect by disrupting cellular pathways. HER2 is commonly overexpressed in UCs, making it a potential therapeutic target. Several ADCs targeting HER2 have been approved for cancer treatment, but their use in UC is still being tested. Numerous HER2 ADCs have demonstrated significant growth inhibition and induction of apoptosis in translational models of HER2-overexpressing bladder cancer. Ongoing clinical trials are assessing the efficacy and safety of ADCs targeting HER2 in UC, with the aim of determining tumor response and the potential of ADCs as a treatment option for UC patients. The development of effective therapies with improved response rates and long-term effectiveness is crucial for advanced and metastatic UC. ADCs targeting HER2 show promise in this regard and merit further investigation for UC treatment.

18.
Front Pharmacol ; 15: 1333235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572429

RESUMO

Background: Cognitive deficits and behavioral disorders such as anxiety and depression are common manifestations of Alzheimer's disease (AD). Our previous work demonstrated that Trichostatin A (TSA) could alleviate neuroinflammatory plaques and improve cognitive disorders. AD, anxiety, and depression are all associated with microglial inflammation. However, whether TSA could attenuate anxiety- and depression-like behaviors in APP/PS1 mice through anti-inflammatory signaling is still unclearly. Methods: In the present study, all mice were subjected to the open field, elevated plus maze, and forced swim tests to assess anxiety- and depression-related behaviors after TSA administration. To understand the possible mechanisms underlying the behavioral effects observed, CST7 was measured in the hippocampus of mice and LPS-treated BV2 microglia. Results: The results of this study indicated that TSA administration relieved the behaviors of depression and anxiety in APP/PS1 mice, and decreased CST7 levels in the hippocampus of APP/PS1 mice and LPS-induced BV2 cells. Conclusion: Overall, these findings support the idea that TSA might be beneficial for reducing neurobehavioral disorders in AD and this could be due to suppression of CST7-related microglial inflammation.

20.
ACS Appl Mater Interfaces ; 16(15): 18459-18473, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578815

RESUMO

Reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) hold great promise for tumor treatment. However, hypoxia, insufficient H2O2, and overexpressed glutathione (GSH) in the tumor microenvironment (TME) hinder ROS generation significantly. Herein, we reported CaO2@Cu-TCPP/CUR with O2/H2O2/Ca2+ self-supply and GSH depletion for enhanced PDT/CDT and Ca2+ overload synergistic therapy. CaO2 nanospheres were first prepared and used as templates for guiding the coordination between the carboxyl of tetra-(4-carboxyphenyl)porphine (TCPP) and Cu2+ ions as hollow CaO2@Cu-TCPP, which facilitated GSH-activated TCPP-based PDT and Cu+-mediated CDT. The hollow structure was then loaded with curcumin (CUR) to form CaO2@Cu-TCPP/CUR composites. Cu-TCPP prevented degradation of CaO2, while Cu2+ ions reacted with GSH to deplete GSH, produce Cu+ ions, and release TCPP, CaO2, and CUR. CaO2 reacted with H2O to generate O2, H2O2, and Ca2+ to achieve O2/H2O2/Ca2+ self-supply for TCPP-based PDT, Cu+-mediated CDT, and CUR-enhanced Ca2+ overload therapy. Thus, this multilevel ROS amplifier enhances synergistic therapy with fewer side effects and drug resistance.


Assuntos
Curcumina , Nanosferas , Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Glutationa , Microambiente Tumoral , Linhagem Celular Tumoral , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA