Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(4): 6543-6557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153572

RESUMO

Experiments were conducted to investigate the potential of the efficient resource utilization of waste cow manure and corn straw in an agricultural ecosystem. In this study, a magnetic cow manure and straw biochar were synthesized by a co-precipitation method, and cadmium (Cd(II)) was removed by adsorption in aqueous solution. Several physicochemical characterization techniques were applied, including SEM, BET, Zeta, FTIR, Raman, XPS, and VSM. The effects of pH value, magnetic biochar content, adsorption kinetics, and isothermal adsorption on the adsorption of Cd(II) were investigated. The physicochemical characterizations revealed that the physical and chemical properties of the magnetic biochar were substantially changed compared to the unmodified biochar. The results showed that the surface of the biochar became rough, the number of oxygen (O)-containing functional groups increased, and the specific surface area increased. The results of the adsorption experiments showed that the adsorption capacity was affected by pH, magnetic biochar addition, Cd(II) concentration, and adsorption time. The adsorption kinetics and isothermal adsorption experiments showed that the Cd(II) adsorption processes of the cow manure and corn straw magnetic biochars were consistent with the Freundlich model and pseudo-second-order kinetic model. The results also showed that the Cd(II) adsorption effect of cow manure magnetic biochar was found to be more effective than that of corn straw magnetic biochar. The optimal conditions for Cd(II) adsorption were 800 ℃ for cow manure magnetic biochar, with a pH value of 5 and 0.14 g biochar addition, and 600 ℃ for straw magnetic biochar with a pH value of 8 and 0.12 g biochar addition. In conclusion, the cow manure magnetic biochar was an effective adsorbent for the absorption of Cd(II) in wastewater.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/análise , Adsorção , Esterco , Ecossistema , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Fenômenos Magnéticos , Cinética
2.
Adv Drug Deliv Rev ; 197: 114842, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105398

RESUMO

Retinal diseases are a rising concern as major causes of blindness in an aging society; therapeutic options are limited, and the precise pathogenesis of these diseases remains largely unknown. Intraocular drug delivery and nanomedicines offering targeted, sustained, and controllable delivery are the most challenging and popular topics in ocular drug development and toxicological evaluation. Retinal organoids (ROs) and organoid-on-a-chip (ROoC) are both emerging as promising in-vitro models to faithfully recapitulate human eyes for retinal research in the replacement of experimental animals and primary cells. In this study, we review the generation and application of ROs resembling the human retina in cell subtypes and laminated structures and introduce the emerging engineered ROoC as a technological opportunity to address critical issues. On-chip vascularization, perfusion, and close inter-tissue interactions recreate physiological environments in vitro, whilst integrating with biosensors facilitates real-time analysis and monitoring during organogenesis of the retina representing engineering efforts in ROoC models. We also emphasize that ROs and ROoCs hold the potential for applications in modeling intraocular drug delivery in vitro and developing next-generation retinal drug delivery strategies.


Assuntos
Organoides , Retina , Animais , Humanos , Espécies Reativas de Oxigênio , Dispositivos Lab-On-A-Chip
3.
Adv Mater ; 35(41): e2211059, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36934404

RESUMO

The neuromuscular junction (NMJ) is a peripheral synaptic connection between presynaptic motor neurons and postsynaptic skeletal muscle fibers that enables muscle contraction and voluntary motor movement. Many traumatic, neurodegenerative, and neuroimmunological diseases are classically believed to mainly affect either the neuronal or the muscle side of the NMJ, and treatment options are lacking. Recent advances in novel techniques have helped develop in vitro physiological and pathophysiological models of the NMJ as well as enable precise control and evaluation of its functions. This paper reviews the recent developments in in vitro NMJ models with 2D or 3D cultures, from organ-on-a-chip and organoids to biohybrid robotics. Related derivative techniques are introduced for functional analysis of the NMJ, such as the patch-clamp technique, microelectrode arrays, calcium imaging, and stimulus methods, particularly optogenetic-mediated light stimulation, microelectrode-mediated electrical stimulation, and biochemical stimulation. Finally, the applications of the in vitro NMJ models as disease models or for drug screening related to suitable neuromuscular diseases are summarized and their future development trends and challenges are discussed.


Assuntos
Sistemas Microfisiológicos , Junção Neuromuscular , Junção Neuromuscular/fisiologia , Neurônios Motores , Fibras Musculares Esqueléticas , Contração Muscular , Músculo Esquelético
4.
NPJ Microgravity ; 8(1): 12, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484162

RESUMO

Bubble nucleation was investigated in a 20-mm-long, wickless heat pipe on the International Space Station. Over 20 h of running experiments using pentane as the working fluid, more than 100 nucleation events were observed. Bubble nucleation at the heater end temporarily boosted peak pressures and vapor temperatures in the device. At the moment of nucleation, the heater wall temperature significantly decreased due to increased evaporation and the original vapor bubble collapsed due to increased pressure. A thermal model was developed and using the measured temperatures and pressures, heat transfer coefficients near the heater end of the system were extracted. Peak heat transfer coefficients during the nucleation event were over a factor of three higher than at steady-state. The heat transfer coefficient data were all collapsed in the form of a single, linear correlation relating the Nusselt number to the Ohnesorge number.

5.
J Agric Food Chem ; 70(1): 184-195, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016506

RESUMO

The mechanisms of coffee against Parkinson disease (PD) remained incompletely elucidated. Numerous studies suggested that gut microbiota played a crucial role in the pathogenesis of PD. Here, we explored the further mechanisms of coffee against PD via regulating gut microbiota. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a PD mouse model, then treated with coffee for 4 consecutive weeks. Behavioral tests consisting of the pole test and beam-walking test were conducted to evaluate the motor function of mice. The levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) were assessed for dopaminergic neuronal loss. The levels of occludin, glial fibrillary acidic protein (GFAP), Bcl-2, Bax, cleaved caspase-3, and cytochrome c (Cyt c) were detected. Moreover, microbial components were measured by 16s rRNA sequencing. Our results showed that coffee significantly improved the motor deficits and TH neuron loss, and reduced the level of α-syn in the MPTP-induced mice. Moreover, coffee increased the level of BBB tight junction protein occludin and reduced the level of astrocyte activation marker GFAP in the MPTP-induced mice. Furthermore, coffee significantly decreased the levels of proapoptotic proteins, including Bax, cleaved caspase-3, and cytochrome c, while it increased the level of antiapoptotic protein Bcl-2, consequently preventing MPTP-induced apoptotic cascade. Moreover, coffee improved MPTP-induced gut microbiota dysbiosis. These findings suggested that the neuroprotective effects of coffee on PD were involved in the regulation of gut microbiota, which might provide a novel option to elucidate the effects of coffee on PD.


Assuntos
Microbioma Gastrointestinal , Fármacos Neuroprotetores , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Café , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
6.
Brain Behav Immun ; 91: 703-715, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148438

RESUMO

A connection between gut microbiota and Parkinson's disease (PD) indicates that dysbiosis of the gut microbiota might represent a risk factor for PD. Microbiota-targeted interventions, including probiotic Clostridium butyricum (Cb), have been recently shown to have favorable effects in PD by regulating microbiota-gut-brain axis. However, the potential beneficial roles and its mechanisms of Cb on PD were still unknown. Male C57BL/6 mice were subjected to a PD model-induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and were treated intragastrically with Cb for 4 weeks. The motor functions were assessed by a series of behavioral tests including pole test, beam walking teat, forced swimming test and open field test. The dopaminergic neuron loss, synaptic plasticity and microglia activation, as well as the levels of colonic glucagon-like peptide-1 (GLP-1), colonic G protein-coupled receptors GPR41/43 and cerebral GLP-1 receptors were assessed. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Our results showed that oral administration of Cb could improve motor deficits, dopaminergic neuron loss, synaptic dysfunction and microglia activation in the MPTP-induced mice. Meanwhile, Cb treatment could reverse the dysbiosis of gut microbiota and the decreased levels of colonic GLP-1, colonic GPR41/43 and cerebral GLP-1 receptor in the MPTP-induced mice. These findings indicated that the neuroprotective mechanism of Cb on PD might be related to the improvement of abnormal gut microbiota-gut-brain axis.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Fármacos Neuroprotetores , Doença de Parkinson , Probióticos , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Peptídeo 1 Semelhante ao Glucagon , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
7.
J Agric Food Chem ; 68(50): 14874-14883, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33284020

RESUMO

Recent evidence has revealed that probiotics could affect neurodevelopment and cognitive function via regulating gut microbiota. However, the role of probiotics in sepsis-associated encephalopathy (SAE) remained unclear. This study was conducted to assess the effects and therapeutic mechanisms of probiotic Clostridium butyricum (Cb) against SAE in mice. The SAE model mouse was induced by cecal ligation and puncture (CLP) and was given by intragastric administration with Cb for 1 month. A series of behavioral tests, including neurological severity score, tail suspension test, and elevated maze test, were used to assess cognitive impairment. Nissl staining and Fluoro-Jade C (FJC) staining were used to assess neuronal injury. Microglia activation, the release of neuroinflammatory cytokines, and the levels of ionized calcium-binding adapter molecule 1 (Iba-1) and brain-derived neurotrophic factor (BDNF) in the brain were determined. The compositions of the gut microbiota were detected by 16S rRNA sequencing. Our results revealed that Cb significantly attenuated cognitive impairment and neuronal damage. Moreover, Cb significantly inhibited excessive activation of microglia, decreased Iba-1 level, and increased BDNF level in the SAE mice. In addition, Cb improved gut microbiota dysbiosis of SAE mice. These findings revealed that Cb exerted anti-inflammatory effects and improved cognitive impairment in SAE mice, and their neuroprotective mechanisms might be mediated by regulating gut microbiota.


Assuntos
Encefalopatias/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/psicologia , Sepse/complicações , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Encefalopatias/etiologia , Encefalopatias/microbiologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/microbiologia
8.
J Agric Food Chem ; 68(27): 7152-7161, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32583667

RESUMO

Alzheimer's disease (AD) is a high-incidence neurodegenerative disease in the elderly. Acetate (Ace) is a short-chain fatty acid (SCFA) with neuroprotective activity. The purpose of this study was to investigate the effects and its possible mechanisms of SCFA Ace on AD. A male APP/PS1 transgenic mouse was given intragastric administration Ace for 4 weeks. Cognitive function and microglia activation in mice were assessed. Furthermore, Ace pretreated amyloid-ß (Aß)-induced BV2 microglia, and the levels of CD11b, COX-2, and G-protein-coupled receptor 41 (GPR41) and phosphorylation of ERK, JNK, and NF-κB p65 were determined. Our results revealed that Ace significantly attenuated the cognitive impairment and decreased the CD11b level in the APP/PS1 mice. Moreover, Ace inhibited the phosphorylation of NF-κB p65, ERK, and JNK and decreased the levels of COX-2 and interleukin 1ß in the Aß-stimulated BV2 microglia. Finally, Ace increased the GPR41 level in the Aß-stimulated BV2 cells. The finding indicated that Ace exerted antineuroinflammatory effects via the upregulation of GPR41 and suppression of the ERK/JNK/NF-κB pathway, which might provide an alternative therapy strategy of AD.


Assuntos
Acetatos/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/administração & dosagem , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinase Quinase 4/imunologia , NF-kappa B/imunologia , Fármacos Neuroprotetores/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/imunologia , Animais , Cognição/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Ácidos Graxos Voláteis/administração & dosagem , Humanos , MAP Quinase Quinase 4/genética , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Receptores Acoplados a Proteínas G/imunologia , Regulação para Cima/efeitos dos fármacos
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118451, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32438302

RESUMO

A metal-organic semiconductor-molecule model was developed with Ag nanoparticles (NPs), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and 4-mercaptobenzoic acid (4-MBA) via the layer-by-layer self-assembly method. In the SERS spectrum of the Ag/PEDOT:PSS/4-MBA system, structural changes in the PEDOT chain were discovered, which provides a deeper understanding of the charge transfer (CT) mechanism in SERS and helps in the development of a method to construct metal-organic semiconductor SERS substrates. A quantitative calculation of the degree of charge transfer (ρCT(κ)) determines the CT contribution of PEDOT:PSS to the SERS intensity of the Ag/PEDOT:PSS/4-MBA system. On this basis, we propose the formation of a resonance complex between Ag NPs and PEDOT:PSS to explore the CT mechanism, which is beneficial for studying interface CT and for understanding the CT mechanism in SERS. The introduction of organic semiconductors in this study not only broadens the research scope of SERS substrates but also contributes to the exploration of SERS mechanisms.

10.
Biophys J ; 112(5): 953-965, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297654

RESUMO

Compared to other aquaporins (AQPs), lens-specific AQP0 is a poor water channel, and its permeability was reported to be pH-dependent. To date, most water conduction studies on AQP0 were performed on protein expressed in Xenopus oocytes, and the results may therefore also reflect effects introduced by the oocytes themselves. Experiments with purified AQP0 reconstituted into liposomes are challenging because the water permeability of AQP0 is only slightly higher than that of pure lipid bilayers. By reconstituting high amounts of AQP0 and using high concentrations of cholesterol to reduce the permeability of the lipid bilayer, we improved the signal-to-noise ratio of water permeability measurements on AQP0 proteoliposomes. Our measurements show that mutation of two pore-lining tyrosine residues, Tyr-23 and Tyr-149 in sheep AQP0, to the corresponding residues in the high-permeability water channel AQP1 have additive effects and together increase the water permeability of AQP0 40-fold to a level comparable to that of AQP1. Molecular dynamics simulations qualitatively support these experimental findings and suggest that mutation of Tyr-23 changes the pore profile at the gate formed by residue Arg-187.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Água/metabolismo , Animais , Aquaporinas/genética , Transporte Biológico , Proteínas do Olho/genética , Simulação de Dinâmica Molecular , Mutação , Permeabilidade , Porosidade , Conformação Proteica , Estabilidade Proteica , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA