Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
MedComm (2020) ; 5(8): e627, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39015557

RESUMO

Minimal hepatic encephalopathy (MHE) has a substantial impact on the clinical outcomes and quality of life (QOL) of patients with cirrhosis. However, timely diagnosis and intervention are challenging due to sophisticated diagnostic methods. In this study, 673 healthy controls and 905 patients with cirrhosis were screened, and 660 healthy controls and 757 patients with cirrhosis, divided into the test (292 patients) and validation (465 patients) cohort, were analyzed after screening. A diagnostic model of the Stroop test (Stroop-CN) was constructed by multivariate linear regression based on the results of healthy controls. The prevalence of MHE and the comparison results with psychometric hepatic encephalopathy score through the Stroop-CN model were stable in the test and validation cohorts. Moreover, the prevalence of MHE remained significantly higher in patients with worse disease conditions marked as high Child-Pugh grades and the Model for End-stage Liver Disease and Sodium (MELD-Na) scores in the test and validation cohort. The EuroQol 5-D questionnaire revealed that patients with MHE had a worse QOL than those without MHE both in the test and validation cohort. In conclusion, an easy and practical Stroop-CN model for MHE diagnosis based on the EncephalApp is established. It is found that a considerable number of Chinese patients with cirrhosis experience MHE, which significantly impacts their QOL.

2.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968937

RESUMO

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.

3.
Adv Sci (Weinh) ; : e2403786, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978324

RESUMO

Periodontitis, a prevalent chronic inflammatory disease, poses significant challenges for effective treatment due to its complex etiology involving specific bacteria and the inflammatory immune microenvironment. Here, this study presents a novel approach for the targeted treatment of periodontitis utilizing the immunomodulatory and antibacterial properties of Embelin, a plant-derived compound, within an injectable hydrogel system. The developed Carboxymethyl Chitosan-Oxidized Dextran (CMCS-OD) hydrogel formed via dynamic chemical bonds exhibited self-healing capabilities and pH-responsive behavior, thereby facilitating the controlled release of Embelin and enhancing its efficacy in a dynamic oral periodontitis microenvironment. This study demonstrates that this hydrogel system effectively prevents bacterial invasion and mitigates excessive immune response activation. Moreover, it precisely modulates macrophage M1/M2 phenotypes and suppresses inflammatory cytokine expression, thereby fostering a conducive environment for bone regeneration and addressing periodontitis-induced bone loss. These findings highlight the potential of the approach as a promising strategy for the clinical management of periodontitis-induced bone destruction.

4.
Front Med (Lausanne) ; 11: 1416574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895180

RESUMO

Background: Patients undergoing gastrointestinal surgery often experience hypotension following general anesthesia induction due to insufficient volume. This study aimed to assess whether pre-rehydration guided by carotid corrected flow time (FTc) could mitigate post-induction hypotension induced by general anesthesia. Methods: Patients undergoing resection of gastrointestinal tumors were assigned to either the conventional treatment group (Group C) or the fluid treatment group based on FTc (Group F). Within Group F, patients were further divided into Group A (carotid FTc <340.7 ms) and Group B (carotid FTc ≥340.7 ms) based on pre-rehydration carotid FTc values. Group A patients received pre-rehydration with 250 mL of colloids (hydroxyethyl starch-HES) administered within 15 min until carotid FTc reached ≥340.7 ms to counteract hypovolemia prior to induction. Patients in Group B and Group C received a continuous HES infusion at a rate of 6 mL/kg/h 30 min before induction to compensate for physiological fluid loss. All patients received a perioperative background infusion of 3 mL/kg/h compound sodium chloride, with infusion rates optimized based on mean arterial pressure (MAP) and heart rate (HR). The incidence of post-induction hypotension was compared between Group C and Group F, as well as between Group A and Group B. Results: The incidence of hypotension after induction was significantly lower in Group F compared to Group C (26.4% vs. 46.7%, respectively; p < 0.001). Patients in Group A received significantly more pre-rehydration, leading to a greater increase in carotid FTc values compared to Group B (336.5 ± 64.5 vs. 174.3 ± 34.1 ms, p = 0.002). However, no significant difference in carotid FTc values after pre-rehydration was observed between the groups. There was no significant difference in the incidence of hypotension after general anesthesia induction between Group A and Group B (22.9% vs. 28.8%, p = 0.535). Conclusion: Pre-rehydration based on FTc can effectively reduce the occurrence of post-induction hypotension in patients undergoing gastrointestinal surgery who present with insufficient volume. Clinical trial registration: https://www.chictr.org.cn/showprojEN.html?proj=201481.

5.
ACS Appl Mater Interfaces ; 16(26): 33149-33158, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38887025

RESUMO

Two-dimensional (2D) nanomaterials have attracted many researchers to explore the effect of ice control and rapid deicing due to their functional groups, large specific surface area, and excellent photothermal properties. However, the impact of size effects on ice crystal formation, growth, and photothermal performance has been rarely explored. Here, graphene oxide nanosheets (GO NSs) with controllable sizes were used as a representative of 2D nanomaterials to probe the effect of size on ice crystal regulation and rapid rewarming in cell cryopreservation. All sizes of GO NSs exhibited notable inhibitory effects on ice crystal size during the recrystallization process. Significantly, when the size of GO NSs was smaller than a certain size (<150 nm), they showed a more significant ice recrystallization suppression effects, which could reduce the ice crystal size to about 17% of that of pure water. Meanwhile, the photothermal experiments also indicated that smaller-sized GO NSs exhibited better photothermal behavior, with 90 nm GO NSs (GO-90) heating to 70 °C in just 1 min induced by an 808 nm laser (2 W/cm2). Furthermore, applying GO-90 (200 µg/mL) to cell cryopreservation, cell viability could reach 95.2% and 93% with a low amount of traditional cryoprotectant (2% v/v DMSO) for A549 cells and HeLa cells after recovery, respectively. With the assistance of a 808 nm laser, the rewarming time was also shortened to 20 s, greatly improving the rewarming rate. Our work associated specific sizes of 2D nanomaterials with their ice growth inhibition behaviors during recrystallization and photothermal properties to synergistically improve cell cryopreservation efficiency, providing guidance for effectively designing novel 2D nanomaterials for collaborative control of ice crystals in cell cryopreservation.

6.
Nat Commun ; 15(1): 5487, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942798

RESUMO

Cancer treatment continues to shift from utilizing traditional therapies to targeted ones, such as protein kinase inhibitors and immunotherapy. Mobilizing dendritic cells (DC) and other myeloid cells with antigen presenting and cancer cell killing capacities is an attractive but not fully exploited approach. Here, we show that PIKFYVE is a shared gene target of clinically relevant protein kinase inhibitors and high expression of this gene in DCs is associated with poor patient response to immune checkpoint blockade (ICB) therapy. Genetic and pharmacological studies demonstrate that PIKfyve ablation enhances the function of CD11c+ cells (predominantly dendritic cells) via selectively altering the non-canonical NF-κB pathway. Both loss of Pikfyve in CD11c+ cells and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively regulates the function of CD11c+ cells, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.


Assuntos
Antígeno CD11c , Células Dendríticas , Morfolinas , Fosfatidilinositol 3-Quinases , Animais , Feminino , Humanos , Camundongos , Antígeno CD11c/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Hidrazonas , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas , Linfócitos T/imunologia , Masculino
7.
BMC Genomics ; 25(1): 471, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745153

RESUMO

BACKGROUND: Gut microbiota(GM) have been proven associated with lots of gastrointestinal diseases, but its causal relationship with Gastroesophageal reflux disease(GERD) and Barrett's esophagus(BE) hasn't been explored. We aimed to uncover the causal relation between GM and GERD/BE and potential mediators by utilizing Mendelian Randomization(MR) analysis. METHODS: Summary statistics of GM(comprising 301 bacteria taxa and 205 metabolism pathways) were extracted from MiBioGen Consortium(N = 18,340) and Dutch Microbiome Project(N = 7,738), GERD and BE from a multitrait meta-analysis(NGERD=602,604, NBE=56,429). Bidirectional two-sample MR analysis and linkage disequilibrium score regression(LDSC) were used to explore the genetic correlation between GM and GERD/BE. Mediation MR analysis was performed for the risk factors of GERD/BE, including Body mass index(BMI), weight, type 2 diabetes, major depressive disorder(MDD), smoking initiation, alcohol consumption, and dietary intake(including carbohydrate, sugar, fat, protein intake), to detect the potential mediators between GM and GERD/BE. RESULTS: 11 bacterial taxa and 13 metabolism pathways were found associated with GERD, and 18 taxa and 5 pathways exhibited causal relationship with BE. Mediation MR analysis suggested weight and BMI played a crucial role in these relationships. LDSC identified 1 taxon and 4 metabolism pathways related to GERD, and 1 taxon related to BE. Specie Faecalibacterium prausnitzii had a suggestive impact on both GERD(OR = 1.087, 95%CI = 1.01-1.17) and BE(OR = 1.388, 95%CI = 1.03-1.86) and LDSC had determined their correlation. Reverse MR indicated that BE impacted 10 taxa and 4 pathways. CONCLUSIONS: This study established a causal link between gut microbiota and GERD/BE, and identified the probable mediators. It offers new insights into the role of gut microbiota in the development and progression of GERD and BE in the host.


Assuntos
Esôfago de Barrett , Refluxo Gastroesofágico , Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Microbioma Gastrointestinal/genética , Refluxo Gastroesofágico/microbiologia , Humanos , Esôfago de Barrett/microbiologia , Esôfago de Barrett/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único
8.
Front Oncol ; 14: 1389713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699634

RESUMO

C1GALT1 plays a pivotal role in colorectal cancer (CRC) development and progression through its involvement in various molecular mechanisms. This enzyme is central to the O-glycosylation process, producing tumor-associated carbohydrate antigens (TACA) like Tn and sTn, which are linked to cancer metastasis and poor prognosis. The interaction between C1GALT1 and core 3 synthase is crucial for the synthesis of core 3 O-glycans, essential for gastrointestinal health and mucosal barrier integrity. Aberrations in this pathway can lead to CRC development. Furthermore, C1GALT1's function is significantly influenced by its molecular chaperone, Cosmc, which is necessary for the proper folding of T-synthase. Dysregulation in this complex interaction contributes to abnormal O-glycan regulation, facilitating cancer progression. Moreover, C1GALT1 affects downstream signaling pathways and cellular behaviors, such as the epithelial-mesenchymal transition (EMT), by modifying O-glycans on key receptors like FGFR2, enhancing cancer cell invasiveness and metastatic potential. Additionally, the enzyme's relationship with MUC1, a mucin protein with abnormal glycosylation in CRC, highlights its role in cancer cell immune evasion and metastasis. Given these insights, targeting C1GALT1 presents a promising therapeutic strategy for CRC, necessitating further research to develop targeted inhibitors or activators. Future efforts should also explore C1GALT1's potential as a biomarker for early diagnosis, prognosis, and treatment response monitoring in CRC, alongside investigating combination therapies to improve patient outcomes.

9.
Infect Immun ; 92(5): e0011324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38624215

RESUMO

Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1ß, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.


Assuntos
Antígenos CD , Antígenos de Protozoários , Macrófagos , Malária , Plasmodium yoelii , Animais , Feminino , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Membrana Celular/metabolismo , Membrana Celular/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária/imunologia , Malária/parasitologia , NF-kappa B/metabolismo , NF-kappa B/imunologia , Plasmodium yoelii/imunologia , Ligação Proteica , Transdução de Sinais
10.
Front Plant Sci ; 15: 1365951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650705

RESUMO

Chestnut blight (caused by Cryphonectria parasitica), together with Phytophthora root rot (caused by Phytophthora cinnamomi), has nearly extirpated American chestnut (Castanea dentata) from its native range. In contrast to the susceptibility of American chestnut, many Chinese chestnut (C. mollissima) genotypes are resistant to blight. In this research, we performed a series of genome-wide association studies for blight resistance originating from three unrelated Chinese chestnut trees (Mahogany, Nanking and M16) and a Quantitative Trait Locus (QTL) study on a Mahogany-derived inter-species F2 family. We evaluated trees for resistance to blight after artificial inoculation with two fungal strains and scored nine morpho-phenological traits that are the hallmarks of species differentiation between American and Chinese chestnuts. Results support a moderately complex genetic architecture for blight resistance, as 31 QTLs were found on 12 chromosomes across all studies. Additionally, although most morpho-phenological trait QTLs overlap or are adjacent to blight resistance QTLs, they tend to aggregate in a few genomic regions. Finally, comparison between QTL intervals for blight resistance and those previously published for Phytophthora root rot resistance, revealed five common disease resistance regions on chromosomes 1, 5, and 11. Our results suggest that it will be difficult, but still possible to eliminate Chinese chestnut alleles for the morpho-phenological traits while achieving relatively high blight resistance in a backcross hybrid tree. We see potential for a breeding scheme that utilizes marker-assisted selection early for relatively large effect QTLs followed by genome selection in later generations for smaller effect genomic regions.

11.
J Colloid Interface Sci ; 668: 264-271, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678882

RESUMO

Electricity-driven nitrate (NO3-) to ammonia (NH3) conversion presents a unique opportunity to simultaneously eliminate nitrate from sewage while capturing ammonia. However, the Faradaic efficiency and ammonia yield in this eight-electron process remain unsatisfactory, underscoring the critical need for more effective electrocatalysts. In this study, a RuCo alloy nanosheets electrodeposited on pinewood-derived three-dimensional porous carbon (RuCo@TDC) is introduced as a highly-efficient electrocatalyst for the nitrate reduction reaction. The RuCo@TDC catalyst exhibits superior electrocatalytic performance, achieving the highest NH3 yield of 2.02 ± 0.11 mmol h-1 cm-2 at -0.6 V versus the reversible hydrogen electrode (vs. RHE) and the highest Faradaic efficiency of 95.7 ± 0.8 % at -0.2 V vs. RHE in an electrolyte mixture of 0.1 M KOH and 0.1 M KNO3. Furthermore, the Zn-NO3- battery using RuCo@TDC as the cathode provides a maximum power density of 2.46 mW cm-2 and a satisfactory NH3 yield of 1110 µg h-1 cm-2.

12.
Heliyon ; 10(6): e27935, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515688

RESUMO

Objectives: This study was aimed at analyzing the burden and trend of Alzheimer's disease and other dementias attributed to smoking (SADD) in the Belt and Road Initiative (BRI) countries during 1990-2019. Methods: Data from The 2019 Global Burden of Disease Study was used to extract information on the burden of SADD in terms of the numbers and age-standardized rate of mortality (ASMR) and disability-adjusted life years (ASDALR) in the BRI countries for 1990-2019. The average annual percent change (AAPC) was used to analyze the temporal trends of ASDALR from 1990 to 2019 and in the final decade by Joinpoint regression analysis. Results: The DALYs of SADD were the highest in China, India, and the Russian Federation in 1990 and in Lebanon, Montenegro and Bosnia, and Herzegovina in 2019. From 1990 to 2019, the ASDALR in China had increased from 55.50/105 to 66.18/105, but decreased from 2010 to 2019, while that of India had declined from 32.84/105 to 29.35/105, but increased from 2010 to 2019. The ASDALR showed the fastest increase in the Russian Federation, with AAPC of 1.97% (95% confidence interval [CI]: 1.77%, 2.16%), and the fastest decline in Sri Lanka, with AAPC of -2.69% (95% CI: 2.79%, -2.59%). ASMR and ASDALR from SADD showed a substantial decline during 1990-2019 both globally and in the different socio-demographic index (SDI) regions (all P < 0.05, except for the high-middle-SDI region). Compared to the rates in males, the AAPC in ASDALR of females was significantly greater in 20 countries(all P < 0.05). In the age group of 20-54 years, the DALYs rate showed a decreasing trend only in 13 members in the low-SDI region (all P < 0.05). Conclusion: Under the premise of eliminating the differences, mobilizing resources in the country itself, the BRI organization, and globally will help reduce the global SADD burden and achieve healthy and sustainable development.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38442060

RESUMO

Neural networks are developed to model the behavior of the brain. One crucial question in this field pertains to when and how a neural network can memorize a given set of patterns. There are two mechanisms to store information: associative memory and sequential pattern recognition. In the case of associative memory, the neural network operates with dynamical attractors that are point attractors, each corresponding to one of the patterns to be stored within the network. In contrast, sequential pattern recognition involves the network memorizing a set of patterns and subsequently retrieving them in a specific order over time. From a dynamical perspective, this corresponds to the presence of a continuous attractor or a cyclic attractor composed of the sequence of patterns stored within the network in a given order. Evidence suggests that the brain is capable of simultaneously performing both associative memory and sequential pattern recognition. Therefore, these types of attractors coexist within the neural network, signifying that some patterns are stored as point attractors, while others are stored as continuous or cyclic attractors. This article investigates the coexistence of cyclic attractors and continuous or point attractors in certain nonlinear neural networks, enabling the simultaneous emergence of various memory mechanisms. By selectively grouping neurons, conditions are established for the existence of cyclic attractors, continuous attractors, and point attractors, respectively. Furthermore, each attractor is explicitly represented, and a competitive dynamic emerges among these coexisting attractors, primarily regulated by adjustments to external inputs.

14.
bioRxiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464258

RESUMO

The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.

15.
BMC Med Res Methodol ; 24(1): 53, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418949

RESUMO

BACKGROUND: Public health initiatives, including human biomonitoring, have been impacted by unique challenges since the onset of the COVID-19 pandemic, compounding a decades-long trend of declining public participation. To combat low public participation rates, public health professionals often employ extensive engagement approaches including in-person interactions related to enrollment and sampling, success of which is an essential component of a statistically defensible study. The onset of the COVID-19 pandemic challenged public health programs to diversify engagement and sampling approaches, limiting direct interactions for the health and safety of the population. This study explores biomonitoring recruitment strategies through non-contact mechanisms and evaluate the application feasibility for population-based studies. METHODS: The Iowa Biomonitoring Program at the State Hygienic Laboratory developed a human biomonitoring study that utilized a multifaceted, distance-based approach. Traditional techniques, such as mailed recruitment invitations and phone-based discussions, were coupled with internet-based surveys and self-collected, shipped urine and water samples. Participation rates were evaluated by employing different mailing methods, and the demographics of enrolled participants were examined. RESULTS: This non-human contact approach achieved a nearly 14% participation rate among a rural population, well above our target rates. Our improved mailing strategy for targeting initially unresponsive participants yielded a significantly increase in the participation rates. The respondents were predominantly individuals with educational attainment of at least high school level. Among all the eligible participants, 83% submitted self-collected samples, a rate comparable to the National Health and Nutrition Examination Survey which involved in-person interviews. CONCLUSIONS: The practice of engaging a rural population during the COVID-19 pandemic by transitioning from face-to-face interactions to a combination of mailing and internet-based approaches resulted in higher-than-expected participant recruitment and sample collection rates. Given the declining trend in the response rates for population-based survey studies, our results suggest conducting human biomonitoring without direct human interaction is feasible, which provides further opportunity to improve response rates and the relevance and reach of public health initiatives.


Assuntos
Monitoramento Biológico , COVID-19 , Humanos , Saúde Pública , Inquéritos Nutricionais , Pandemias , COVID-19/epidemiologia
16.
Cell Discov ; 10(1): 15, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331872

RESUMO

Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.

17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 135-141, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38284254

RESUMO

Objective To explore the effects and mechanism of high-mobility group nucleosome-binding protein 1 (HMGN1) on the inflammatory response of mouse BV2 microglia. Methods BV2 cells were incubated with recombinant HMGN1 at different concentrations (0, 100, 200, 500, 1000, 2000 ng/mL) for 6 hours, and the morphological changes were observed under a microscope. The mRNA levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and monocyte chemotactic protein 1 (MCP-1) were detected by real time quantitative PCR. Microglial cells were then randomly divided into a control group, model group, inhibitor group and antagonist group. The cells in the model group were treated with 500 ng/mL HMGN1, while the antagonist group was treated with 500 ng/mL TAK-242 (resatorvid), a Toll-like receptor 4 (TLR4) antagonist, in addition to HMGN1. Real time quantitative PCR and immunofluorescence were used to detect the expression of M1/M2 markers in the four groups, and Western blot analysis was used to measure the protein expression levels of inducible nitric-oxide synthase (iNOS), TLR4, myeloid differentiation factor88 (MyD88), nuclear factor κB p65 (NF-κB p65) and inhibitor of NF-κB(IκB)kinase ß(IKK-ß). Results After the treatment of HMGN1, the morphology of BV2 cells changed significantly, showing an amoeba-like appearance. The mRNA levels of TNF-α, IL-6, IL-1ß and MCP-1 increased with the HMGN1 concentration, with a statistically significant difference compared to the 0 ng/mL HMGN1 group. At the same time, the mRNA level of iNOS, a M1 phenotype marker, increased with the HMGN1 concentration, while the level of CD206, a M2 phenotype marker, decreased with HMGN1 concentration, showing a statistically significant difference compared to the 0 ng/mL HMGN1 group. Compared with the model group, the mRNA level of M1 phenotypic marker iNOS in the antagonist group was significantly lower, and the level of M2 phenotypic marker CD206 was significantly higher. The results of immunofluorescence cytochemistry also showed that the expression of M1 phenotypic marker iNOS in the antagonist group was lower. The results of Western blot suggested that the protein expression levels of iNOS, TLR4, MyD88, NF-κB p65 and IKK-ß decreased significantly in the antagonist group. Conclusion HMGN1 may induce the activation of BV2 microglial cells by upregulating pro-inflammatory mediators through activating the TLR4/MyD88/NF-κB p65/IKK-ß signaling pathway.


Assuntos
Proteína HMGN1 , NF-kappa B , Animais , Camundongos , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Microglia , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Nucleossomos/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251145

RESUMO

In this work, a bimetallic sulfide-coupled graphene hybrid was designed and constructed for capacitive energy storage. The hybrid structure involved decorating copper-cobalt-sulfide (CuCo2S4) nanoparticles onto graphene layers, with the nanoparticles anchored within the graphene layers, forming a hybrid energy storage system. In this hybrid structure, rGO can work as the substrate and current collector to support the uniform distribution of the nanoparticles and provides efficient transportation of electrons into and out of the electrode. In the meantime, CuCo2S4-active materials are expected to offer an evident enhancement in electrochemical activities, due to the rich valence change provided by Cu and Co. Benefiting from the integrated structure of CuCo2S4 nanoparticles and highly conductive graphene substrates, the prepared CuCo2S4@rGO electrode exhibited a favorable capacitive performance in 1 M KOH. At 1 A g-1, CuCo2S4@rGO achieved a specific capacitance of 410 F g-1. The capacitance retention at 8 A g-1 was 70% of that observed at 1 A g-1, affirming the material's excellent rate capability. At the current density of 5 A g-1, the electrode underwent 10,000 charge-discharge cycles, retaining 98% of its initial capacity, which indicates minimal capacity decay and showcasing excellent cycling performance.

19.
Science ; 383(6678): 62-70, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175892

RESUMO

Immune checkpoint inhibitors can stimulate antitumor immunity but can also induce toxicities termed immune-related adverse events (irAEs). Colitis is a common and severe irAE that can lead to treatment discontinuation. Mechanistic understanding of gut irAEs has been hampered because robust colitis is not observed in laboratory mice treated with checkpoint inhibitors. We report here that this limitation can be overcome by using mice harboring the microbiota of wild-caught mice, which develop overt colitis following treatment with anti-CTLA-4 antibodies. Intestinal inflammation is driven by unrestrained activation of IFNγ-producing CD4+ T cells and depletion of peripherally induced regulatory T cells through Fcγ receptor signaling. Accordingly, anti-CTLA-4 nanobodies that lack an Fc domain can promote antitumor responses without triggering colitis. This work suggests a strategy for mitigating gut irAEs while preserving antitumor stimulating effects of CTLA-4 blockade.


Assuntos
Linfócitos T CD4-Positivos , Colite , Inibidores de Checkpoint Imunológico , Ativação Linfocitária , Microbiota , Receptores de IgG , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Colite/etiologia , Colite/microbiologia , Antígeno CTLA-4/antagonistas & inibidores , Microbiota/imunologia , Receptores de IgG/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Camundongos Endogâmicos C57BL
20.
ISA Trans ; 144: 211-219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977886

RESUMO

This paper concerns the tracking control problem of a class of uncertain nonlinear systems subject to deferred time-varying state constraints and external disturbances. The states of the system are free in the initial phase and are restricted by some time-varying constraints after a particular time. A class of novel shifting functions are defined, which make any initial states that beyond the constraint region move to the desired position (such as zero). Thereafter, a new state transformation is implemented for the shifted state, which transforms the state constraint problem into the boundedness of a new variable. Compared with the existing BLF method, this approach avoids feasibility test for virtual control variables. Adaptive backstepping control and dynamic surface control are used in system controller design and stability analysis, and the ideal tracking performance is achieved. Finally, simulation example and comparative studies are carried out to illustrate the effectiveness and outstanding characteristics of the proposed approach. Simulation results show that the proposed control scheme broadens the scope of application, shortens running time and improves control efficiency compared with the existing control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA