Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 171: 421-432, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37783137

RESUMO

Using fast infrared heating technology to minimize the pyrolysis temperature differential and optimizing secondary reactions is advantageous for studying co-pyrolysis behaviors. In this study, the co-pyrolysis behaviors of waste tyres (WT) and corn stover (CS), including product distribution, pyrolysis kinetics, and thermodynamics, were studied using TGA-FTIR analysis and fast infrared heating reactor. The DTG curves for the co-pyrolysis of WT and CS significantly differed from the calculated values, implying that the pyrolysis intermediates produced by CS during the pyrolysis process may have synergetic effects with the pyrolysis of WT. The apparent activation energies using the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were similar, 244.88 kJ/mol and 245.93 kJ/mol, respectively. The experiment results suggest that the bio-oil yield increased first and then decreased with a further temperature increase. The yield of bio-oil gradually increased from 35.36% to 46.06% as temperature rose from 500 °C to 700 °C; but the further increasing to 800 °C decreased the bio-oil yield to 40.72%. The aromatic compounds in tar gradually increased with increasing the temperature, while the aliphatic compounds increased initially and then reduced. Meanwhile, the oxygenated compounds first decreased and then increased with increasing the pyrolysis temperature. The yield of light oil components (C<10) increased from 5.11% at 400 °C to 7.71% at 700 °C. A further increase in the pyrolysis temperature to 800 °C reduced the light oil content to 4.93%.

2.
Nat Commun ; 14(1): 4105, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433770

RESUMO

Mitochondria are the key organelles for sensing oxygen, which is consumed by oxidative phosphorylation to generate ATP. Lysosomes contain hydrolytic enzymes that degrade misfolded proteins and damaged organelles to maintain cellular homeostasis. Mitochondria physically and functionally interact with lysosomes to regulate cellular metabolism. However, the mode and biological functions of mitochondria-lysosome communication remain largely unknown. Here, we show that hypoxia remodels normal tubular mitochondria into megamitochondria by inducing broad inter-mitochondria contacts and subsequent fusion. Importantly, under hypoxia, mitochondria-lysosome contacts are promoted, and certain lysosomes are engulfed by megamitochondria, in a process we term megamitochondria engulfing lysosome (MMEL). Both megamitochondria and mature lysosomes are required for MMEL. Moreover, the STX17-SNAP29-VAMP7 complex contributes to mitochondria-lysosome contacts and MMEL under hypoxia. Intriguingly, MMEL mediates a mode of mitochondrial degradation, which we termed mitochondrial self-digestion (MSD). Moreover, MSD increases mitochondrial ROS production. Our results reveal a mode of crosstalk between mitochondria and lysosomes and uncover an additional pathway for mitochondrial degradation.


Assuntos
Lisossomos , Mitocôndrias , Humanos , Hipóxia , Oxigênio , Digestão
3.
ISA Trans ; 140: 18-31, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37301650

RESUMO

The problem of multi-detection multi-target tracking (MDMTT) using over-the-horizon radar in dense clutter environment is studied in this paper. The biggest challenge of MDMTT is the 3-dimensional multipath data association among measurements, detection models and targets. In particular, a lot of clutter measurements are generated in dense clutter environment, which increase the computational burden of 3-dimensional multipath data association greatly. A measurement based dimension descent association (DDA) algorithm is proposed to solve the 3-dimensional multipath data association, which decomposes the 3-dimensional multipath data association into two 2-dimensional data associations. The proposed algorithm can reduce the computational burden compared with the optimal 3-dimensional multipath data association and the computational complexity is analyzed. Besides, a time extension method is designed to detect the new-born targets that appear in the tracking scene, which is based on the sequential measurements. The convergence of the proposed measurement based DDA algorithm is analyzed. The estimation error can convergence to 0 as the number of Gaussian mixtures tends to infinity. The effectiveness and rapidity of the measurement based DDA algorithm are demonstrated by the comparative simulation with the previously proposed algorithms.

4.
Mol Cancer ; 22(1): 45, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882835

RESUMO

PIWI proteins have a strong correlation with PIWI-interacting RNAs (piRNAs), which are significant in development and reproduction of organisms. Recently, emerging evidences have indicated that apart from the reproductive function, PIWI/piRNAs with abnormal expression, also involve greatly in varieties of human cancers. Moreover, human PIWI proteins are usually expressed only in germ cells and hardly in somatic cells, so the abnormal expression of PIWI proteins in different types of cancer offer a promising opportunity for precision medicine. In this review, we discussed current researches about the biogenesis of piRNA, its epigenetic regulatory mechanisms in human cancers, such as N6-methyladenosine (m6A) methylation, histone modifications, DNA methylation and RNA interference, providing novel insights into the markers for clinical diagnosis, treatment and prognosis in human cancers.


Assuntos
Neoplasias , RNA de Interação com Piwi , Humanos , Neoplasias/genética , Epigênese Genética , Metilação de DNA , Interferência de RNA
5.
Adv Sci (Weinh) ; 10(16): e2205557, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988448

RESUMO

Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.

6.
ISA Trans ; 138: 318-328, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36925421

RESUMO

This paper studies the distributed time-varying output formation tracking problem for heterogeneous multi-agent systems with both diverse dimensions and parameters. The output of each follower is supposed to track that of the virtual leader while accomplishing a time-varying formation configuration. First, a distributed trajectory generator is proposed based on neighboring interactions to reconstitute the state of virtual leader and provide expected trajectories with the formation incorporated. Second, an optimal tracking controller is designed by the model-free reinforcement learning technique using online off-policy data instead of requiring any knowledge of the followers' dynamics. Stabilities of the learning process and resulting controller are analyzed while solutions to the output regulator equations are equivalently obtained. Third, a compensational input is designed for each follower based on previous learning results and a derived feasibility condition. It is proved that the output formation tracking error converges to zero asymptotically with the biases to cost functions being restricted arbitrarily small. Finally, numerical simulations verify the proposed learning and control scheme.

7.
J Colloid Interface Sci ; 638: 709-718, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780851

RESUMO

Among many supercapacitor electrode materials, carbon materials are widely used due to their large specific surface area, good electrical conductivity and high economic efficiency. However, carbon-based supercapacitors face the challenges of low energy density and limited operating environment. This work reports a facile self-assembled method to prepare three-dimensional carbon nanotubes/reduced graphene oxide (CNTs/rGO) aerogel material, which was applied as both positive and negative electrodes in a symmetric superacapacitor. The fabricated supercapacitor exhibited prominent capacitive performance not only at room temperature, but also at extreme temperatures (-20 âˆ¼ 80 °C). The specific capacitances of the symmetric supercapacitors based on CNTs/rGO at a weight ratio of 2:5 respectively reached 107.8 and 128.2 F g-1 at 25 °C and 80 °C with KOH as the electrolyte, and 80.0 and 144.6 F g-1 at -20 °C and 60 °C with deep eutectic solvent as the electrolyte. Notably, the capacitance retention and coulombic efficiency of the assembled supercapacitors remained almost unchanged after 20,000 cycles of charge/discharge test over a wide temperature range. The work uncovered a possibility for the development of high-performance supercapacitors flexibly operated at extreme temperatures.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35951568

RESUMO

This article investigates the practical time-varying output formation tracking (TVOFT) problem for heterogeneous nonlinear multiagent systems (MASs) having multiple leaders, where agents herein could have heterogeneous dynamics and interact with each other under event-triggered communications. It is required that the outputs of followers not only track the predefined convex combination of multiple leaders but also achieve the desired time-varying formation simultaneously. The existing works on formation tracking problems for MASs with multiple leaders depend on the assumption that each follower is a well-informed or uninformed follower, where the well-informed follower is required to have all the leaders as its neighbor. To remove the limitation, a fully distributed observer-based formation tracking control protocol is developed and employed. First, an adaptive state observer with an edge-based event-triggered mechanism for estimating the states of multiple leaders is proposed based on the neighboring interactions, which eliminates the unexpected Zeno behavior. Second, a novel observer is constructed for each follower by exploiting the output information of the follower, in which the adaptive neural network (NN)-based approximation is exploited to compensate for the unknown nonlinearity. A practical TVOFT control protocol is then generated by the proposed observers, where the parameters are determined by an algorithm including five steps. With the help of Lyapunov stability theory and output regulation method, a practical TVOFT criterion for the considered closed-loop system is derived. Finally, the effectiveness of the proposed control scheme is illustrated by a numerical example.

9.
ACS Omega ; 7(33): 29171-29180, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033684

RESUMO

Simultaneous capture of SO2 and NO x from flue gas is critical for coal-fired power generation. In this study, environmentally friendly and high-performance deep eutectic solvents based on ethylene glycol and ammonium bromide were designed to capture SO2 and NO2 simultaneously. The SO2 and NO2 absorption performances and absorption mechanisms were systematically investigated by 1H NMR and Fourier transform infrared (FT-IR) spectroscopy in combination with ab initio calculations using Gaussian software. The results showed that EG-TBAB DESs can absorb low concentrations of SO2 and NO2 from the flue gas simultaneously at low temperatures (≤50 °C). 1H NMR, FT-IR, and simulation results indicate that SO2 and NO2 are absorbed by forming EG-TBAB-SO2-NO2 complexes, Br- is the main active site for NO2 absorption, and NO2 is more active in an EG-TBAB-NO2-SO2 complex than SO2. EG-TBAB DESs exhibit outstanding regeneration capability, and absorption capacities remain unchanged after five absorption-desorption cycles. The fundamental understanding of simultaneous capture of SO2 and NO2 from this study enables DES structures to be rationally designed for efficient and low-cost desulfurization and denitrification reagents.

10.
Nanomaterials (Basel) ; 12(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269225

RESUMO

This study reports a novel method for synthesizing super-long carbon nanotubes (SL-CNTs) from cellulose via a microwave treatment process without an external catalyst. CNTs with a length of 0.7-2 mm were obtained via microwave treatment of cellulose biochar temperatures of 1200-1400 °C. Scanning electron microscope (SEM), together with high-resolution transmission electron microscope (HRTEM) results, were used to investigate the changes in the length and morphology of CNTs with respect to treatment temperature. The morphology of CNTs changed from twisted, curved, and threadlike to straight structures. The average length of CNTs after microwave pyrolysis at 600 °C was approximately 600-1800 nm, which after microwave treatment at 1300 °C and 1400 °C increased to about 1-2 mm. X-ray diffractometer (XRD) results confirmed the crystalline structure of CNTs with two prominent peaks at 2θ = 26.3° and 2θ = 43.2° correlating with the graphite (002) and (100) reflections. The ID/IG ratio obtained from Raman spectra of the CNTs decreased to the lowest value of 0.84 after microwave treatment at 1400 °C, implying a high degree of carbon order. The presence of Fe and trace amounts of other elements were confirmed by the energy-dispersive X-ray spectrometer (EDS) and were postulated to have catalyzed the growth of CNTs. The mechanism of the SL-CNTs growth under microwave treatment was proposed and discussed.

11.
J Hazard Mater ; 427: 128132, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35038661

RESUMO

Mercury is a highly toxic heavy metal pollutant. It is of great significance to develop cost-effective mercury pollution control technologies of coal-fired flue gas. Among various mercury from flue gas removal methods, the application of existing air pollution control devices (APCDs) to remove mercury from flue gas is one of the most valuable methods because it doesn't need to install additional mercury removal equipment, reducing the cost of mercury removal. This review summarizes the recent progress of mercury from flue gas removal by APCDs (e.g., SCR denitration device, WFGD system and dust removal device). SCR denitration device can achieve partial removal of mercury in flue gas through combined with WFGD system, but easy inactivation and poor sulfur/water/heavy metals resistance of SCR catalyzers are still the main problems. WFGD systems can remove most of Hg2+ (80%-95%), but have low treatment ability for Hg0. Various oxidants can effectively oxidize Hg0 into Hg2+. However, traditional oxidants have high prices and secondary pollution due to the formation of by-products. Fabric filters (FFs), electrostatic precipitators (ESPs) and hybrid fabric filters (HFs) can all control the emission of mercury in the flue gas to a certain extent, especially can effectively remove most of HgP and part of Hg2+, but has low removal capacity for Hg0. Compared with ESP, FF has better capture efficiency for Hg2+ and Hg0, and a combination of ESP and FF, that is HF, can effectively improve the mercury removal capacity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mercúrio , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Carvão Mineral/análise , Mercúrio/análise , Centrais Elétricas
12.
IEEE Trans Cybern ; PP2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37015457

RESUMO

This article investigates a fully data-driven method to solve the robust output formation tracking control problem for the multiagent system (MAS) under actuator faults. The outputs of the followers are controlled to track those of multiple leaders with respect to a convex point while achieving an expected time-varying formation. To obviate the requirement of various system prior knowledge in typical MAS control, a hierarchical frame is developed with three learning and control stages using the online measured data. First, a distributed adaptive observer is designed to coordinate the state convex of multiple leaders while estimating unknown dynamics. The adaptive mechanism relaxes the demand for global topology. Second, by collecting and reusing the online system data, an off-policy reinforcement learning (RL) method is proposed in a continuous form to acquire nominal feedback gains from partial observations of the followers. Essential system models are learned along with the RL process, while solutions to the output regulation equations are implicitly obtained. Third, a comprehensive robust controller is further presented based on the previous learning results. To address the actuator faults with efficiency loss and bias, the adaptive neural networks and robust compensations are utilized in a model-free manner. The output formation tracking is achieved under a derived feasibility condition while stabilities of the learning and control methods are analyzed. Finally, simulation results demonstrate the validity of this fully data-driven control frame.

13.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34772001

RESUMO

A few-layer graphene (FLG) composite material was synthesized using a rich reservoir and low-cost coal under the microwave-assisted catalytic graphitization process. X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used to evaluate the properties of the FLG sample. A well-developed microstructure and higher graphitization degree were achieved under microwave heating at 1300 °C using the S5% dual (Fe-Ni) catalyst for 20 min. In addition, the synthesized FLG sample encompassed the Raman spectrum 2D band at 2700 cm-1, which showed the existence of a few-layer graphene structure. The high-resolution TEM (transmission electron microscopy) image investigation of the S5% Fe-Ni sample confirmed that the fabricated FLG material consisted of two to seven graphitic layers, promoting the fast lithium-ion diffusion into the inner surface. The S5% Fe-Ni composite material delivered a high reversible capacity of 287.91 mAhg-1 at 0.1 C with a higher Coulombic efficiency of 99.9%. In contrast, the single catalyst of S10% Fe contained a reversible capacity of 260.13 mAhg-1 at 0.1 C with 97.96% Coulombic efficiency. Furthermore, the dual catalyst-loaded FLG sample demonstrated a high capacity-up to 95% of the initial reversible capacity retention-after 100 cycles. This study revealed the potential feasibility of producing FLG materials from bituminous coal used in a broad range as anode materials for lithium-ion batteries (LIBs).

14.
Nanomaterials (Basel) ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202042

RESUMO

Metal-supported few-layer graphene (FLG) was synthesized via microwave-assisted catalytic graphitization owing to the increasing demand for it and its wide applications. In this study, we quickly converted earth-abundant and low-cost bituminous coal to FLG over Fe catalysts at a temperature of 1300 °C. X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and N2 adsorption-desorption experiments were performed to analyze the fabricated metal-supported FLG. The results indicated that the microwave-irradiation temperature at a set holding-time played a critical role in the synthesis of metal-supported FLG. The highest degree of graphitization and a well-developed pore structure were fabricated at 1300 °C using a S10% Fe catalyst for 20 min. High-resolution transmission electron microscopy analysis confirmed that the metal-supported FLG fabricated via microwave-assisted catalytic graphitization consisted of 3-6 layers of graphene nanosheets. In addition, the 2D band at 2700 cm-1 in the Raman spectrum of the fabricated metal-supported FLG samples were observed, which indicated the presence of few-layer graphene structure. Furthermore, a mechanism was proposed for the microwave-assisted catalytic graphitization of bituminous coal. Here, we developed a cost-effective and environmental friendly metal-supported FLG method using a coal-based carbonaceous material.

15.
EMBO J ; 40(8): e106283, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33665835

RESUMO

Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Estresse Oxidativo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Células Cultivadas , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Ligação Proteica
16.
Nanomaterials (Basel) ; 12(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35010007

RESUMO

This study focused on the structural investigation of few-layer graphene (FLG) synthesis from bituminous coal through a catalytic process under microwave heat treatment (MW). The produced FLG has been examined by Raman spectroscopy, XRD, TEM, and AFM. Coal was activated using the potassium hydroxide activation process. The FLG synthesis processing duration was much faster requiring only 20 min under the microwave radiation. To analyse few-layer graphene samples, we considered the three bands, i.e., D, G, and 2D, of Raman spectra. At 1300 °C, the P10% Fe sample resulted in fewer defects than the other catalyst percentages sample. The catalyst percentages affected the structural change of the FLG composite materials. In addition, the Raman mapping showed that the catalyst loaded sample was homogeneously distributed and indicated a few-layer graphene sheet. In addition, the AFM technique measured the FLG thickness around 4.5 nm. Furthermore, the HRTEM images of the P10% Fe sample contained a unique morphology with 2-7 graphitic layers of graphene thin sheets. This research reported the structural revolution with latent feasibility of FLG synthesis from bituminous coal in a wide range.

17.
IEEE Trans Cybern ; 51(4): 2265-2277, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31869813

RESUMO

Fully adaptive practical time-varying output formation tracking issues of high-order nonlinear stochastic multiagent systems with multiple leaders are researched, where the adaptive fuzzy-logic system (FLS) is introduced for estimating the mismatched integrated uncertain items. Distinctive with former results, stochastic noise is considered in the dynamics, and the followers are required for achieving the time-varying output formation tracking in probability of the convex combination of the leaders' outputs. First, a fully adaptive practical time-varying output formation tracking protocol is put forward, which only utilizes the neighboring relative information, and the global interaction topology information is not used. Besides, the designed protocol employs the adaptive FLSs to estimate the mismatched uncertainties of the followers and the leaders, and the uncertain boundary functions of the stochastic noise. Then, the design process of control protocol and parameter adaptive update law is summarized within four steps in an algorithm. Third, the stability and the properties of the proposed protocol and algorithm are analyzed by employing the Lyapunov theories and stochastic stability theories. Finally, numerical simulation results illustrate the effectiveness of achieved protocol and algorithm.

18.
Ultrason Sonochem ; 70: 105301, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32777680

RESUMO

Water with small volume (a few microlitres or less) often maintains its liquid state even at temperatures much lower than 0 °C. In this study, we examine the onset of ice nucleation in micro-sized water droplets with immersed solid particles under weak ultrasonic vibrations. The experimental results show that ice nucleation inside the water droplets can be successfully induced at relatively high temperatures. The experimental observations indicate that the nucleation sites are commonly encountered in the region between the particle and the substrate. A numerical study is conducted to gain insight into the possible underlying phenomenon for ice nucleation in such systems. The simulation results show that the collapse of cavitation bubbles in the crevice at the particle surface is structure sensitive with the hemisphere-shape crevice generating pressures as high as 1.63 GPa, which is theoretically suitable for inducing ice nucleation.

19.
ACS Omega ; 5(48): 31220-31226, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324831

RESUMO

The removal of NO x (approximately 90% of which is NO) from flue gas is a crucial process for clean power generation from coal combustion. Oxidation of NO to NO2 followed by NO2 absorption using sorbents is considered to be a promising technology alternative to selective catalytic reduction (SCR). This study investigated the absorption of NO2 in flue gas by ethylene glycol (EG)-tetrabutylammonium bromide (TBAB) deep eutectic solvents (DESs) under a range of experimental conditions. The effects of experimental conditions including molar ratio of EG to TBAB, operating temperature, residence time, and the O2 and steam partial pressure in the flue gas on the denitrification performance of EG-TBAB DESs were systematically analyzed. The concentrations of NO2 in the inlet and outlet were evaluated using a flue gas analyzer. The chemical structure changes of DESs after denitrification were characterized using Fourier transform infrared (FT-IR) spectroscopy. The obtained analysis signified that maximum denitrification efficiency and capacity were achieved at a EG/TBAB molar ratio of 5:1, 50 °C, and 6 s residence time. EG-TBAB DESs were able to maintain a stable denitrification performance after five absorption-desorption cycles. The results of quantum chemical calculation and 1H NMR spectra of EG-TBAB DES show that bromide anions in the EG-TBAB DES maintained strong interactions with NO2 via hydrogen bonding, leading to increased NO2 adsorption. The presence of O2 and steam in the flue gas improved the absorption of NO2 in EG-TBAB DESs due to chemical reactions and formation of nitrate.

20.
Cell Death Dis ; 11(10): 940, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33130824

RESUMO

Mitochondrial cristae are the main site for oxidative phosphorylation, which is critical for cellular energy production. Upon different physiological or pathological stresses, mitochondrial cristae undergo remodeling to reprogram mitochondrial function. However, how mitochondrial cristae are formed, maintained, and remolded is still largely unknown due to the technical challenges of tracking mitochondrial crista dynamics in living cells. Here, using live-cell Hessian structured illumination microscopy combined with transmission electron microscopy, focused ion beam/scanning electron microscopy, and three-dimensional tomographic reconstruction, we show, in living cells, that mitochondrial cristae are highly dynamic and undergo morphological changes, including elongation, shortening, fusion, division, and detachment from the mitochondrial inner boundary membrane (IBM). In addition, we find that OPA1, Yme1L, MICOS, and Sam50, along with the newly identified crista regulator ATAD3A, control mitochondrial crista dynamics. Furthermore, we discover two new types of mitochondrial crista in dysfunctional mitochondria, "cut-through crista" and "spherical crista", which are formed due to incomplete mitochondrial fusion and dysfunction of the MICOS complex. Interestingly, cut-through crista can convert to "lamellar crista". Overall, we provide a direct link between mitochondrial crista formation and mitochondrial crista dynamics.


Assuntos
Morte Celular/genética , GTP Fosfo-Hidrolases/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA