Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(13): 6954-6963, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512330

RESUMO

The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.


Assuntos
Receptores Odorantes , Tephritidae , Feminino , Animais , Oviposição , Tephritidae/fisiologia , Receptores Odorantes/genética , Benzotiazóis/farmacologia
2.
Curr Opin Insect Sci ; 63: 101196, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38555081

RESUMO

Insects rely heavily on their olfactory system for various behaviors, including foraging, mating, and oviposition. Numerous studies have demonstrated that insects can adjust their olfactory behaviors in response to different physiological states and environmental conditions. This flexibility allows them to perceive and process odorants according to different conditions. The Oriental fruit fly, Bactrocera dorsalis, is a highly destructive and invasive pest causing significant economic losses to fruit and vegetable crops worldwide. The olfactory behavior of B. dorsalis exhibits strong plasticity, resulting in its successful invasion. To enhance our understanding of B. dorsalis' olfactory behavior and explore potential strategies for behavior control, we have reviewed recent literature on its olfactory plasticity and potential molecular mechanisms.

3.
J Agric Food Chem ; 72(6): 2888-2897, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294413

RESUMO

Olfaction plays indispensable roles in insect behavior such as host location, foraging, oviposition, and avoiding predators. Chemosensory proteins (CSPs) can discriminate the hydrophobic odorants and transfer them to the odorant receptors. Presently, CSPs have been identified in many insect species. However, their presence and functions remain unknown in Bactrocera dorsalis, a destructive and invasive insect pest in the fruit and vegetable industry. Here, we annotated eight CSP genes in the genome of B. dorsalis. The results of quantitative real-time polymerase chain reaction (RT-qPCR) showed that BdorCSP3 was highly expressed in the antennae. Molecular docking and in vitro binding assays showed that BdorCSP3 had a good binding ability to host volatiles methyl eugenol (ME, male-specific attractant) and ß-caryophyllene (potential female attractant). Subsequently, CRISPR/Cas9 was used to generate BdorCSP3-/- mutants. Electroantennograms (EAGs) and behavioral assays revealed that male mutants significantly reduced the preference for ME, while female mutants lost their oviposition preference to ß-caryophyllene. Our data indicated that BdorCSP3 played important roles in the perception of ME and ß-caryophyllene. The results not only expanded our knowledge of the olfaction perception mechanism of insect CSPs but also provided a potential molecular target for the control of B. dorsalis.


Assuntos
Percepção Olfatória , Sesquiterpenos Policíclicos , Receptores Odorantes , Tephritidae , Animais , Feminino , Simulação de Acoplamento Molecular , Tephritidae/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
4.
Commun Biol ; 6(1): 176, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792777

RESUMO

The oriental fruit fly Bactrocera dorsalis (Hendel) is a notorious pest of fruit crops. Gravid females locate suitable oviposition sites by detecting host plant volatiles. Here, we demonstrate that 1-octen-3-ol, a volatile from mango, guides the oviposition behavior of female flies. Two odorant receptors (BdorOR7a-6 and BdorOR13a) are identified as key receptors for 1-octen-3-ol perception by qPCR analysis, heterologous expression in Xenopus laevis oocytes and HEK 293 cells followed by in vitro binding assays, as well as CRISPR/Cas9 genome editing in B. dorsalis. Molecular docking and site-directed mutagenesis are used to determine major binding sites for 1-octen-3-ol. Our results demonstrate the potential of 1-octen-3-ol to attract gravid females and molecular mechanism of its perception in B. dorsalis. BdorOR7a-6 and BdorOR13a can therefore be used as molecular targets for the development of female attractants. Furthermore, our site-directed mutagenesis data will facilitate the chemical engineering of 1-octen-3-ol to generate more efficient attractants.


Assuntos
Receptores Odorantes , Humanos , Feminino , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Oviposição , Células HEK293 , Simulação de Acoplamento Molecular , Drosophila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA