Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 14(11): 15517-15532, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33141556

RESUMO

Telemedicine provides an attractive vision for tele-monitoring human health conditions and, thus, offers the opportunity for timely preventing chronic disease. A key limitation of promoting telemedicine in clinic application is the lack of a noninvasive med-tech and effective monitoring platform, which should be wearable and capable of high-performance tele-monitoring of health risk. Here we proposed a volatolomics-based telemedicine for continuously and noninvasively assessing human health status through continuously tracking the variation of volatile markers derived from human breath or skin. Particularly, a nanosensor-based flexible electronic was specifically designed to serve as a powerful platform for implementing the proposed cost-effective healthcare. An all-flexible and highly packed makeup (all functional units were integrated in a 2*2*0.19 cm3 plate) enables an electronic, compact configuration and the capability of resisting negative impact derived from customers' daily movement. Notably, the nanosensor-based electronic demonstrates high specificity, quick response rate (t90% = 4.5 s), and desirable low detection limit (down to 0.117 ppm) in continuous tele-monitoring chronic-disease-related volatile marker (e.g., acetone). Assisted by the power saved light fidelity (Li-Fi) communicating technology, a clinic proof on the specifically designed electronic for noninvasively and uninterrupted assessing potential health risk (e.g., diabetics) is successfully implemented, with the accuracy of around 81%. A further increase in the accuracy of prewarning is predicted by excluding the impact of individual differences such as the gender, age, and smoking status of the customer. These promising pilot results indicate a bright future for the tailor-made nanosensing-device-supported volatolomics-based telemedicine in preventing chronic diseases and increasing patients' survival rate.


Assuntos
Telemedicina , Eletrônica , Humanos , Tecnologia
3.
ACS Sens ; 4(8): 2150-2155, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31296006

RESUMO

Yttria-stabilized zirconia (YSZ) based potentiometric gas sensors have been widely utilized for detecting NOx (NO and NO2). Nevertheless, it is still remains challenging issue for YSZ-based sensors to sense total NOx due to the opposite response signals to NO and NO2. Herein, we report an efficient strategy to sense total NOx at high temperature (above 300 °C) by designing a dual functional sensing electrode (SE); namely, the SE will simultaneously convert NO (in NOx mixture) to NO2 and electrocatalyze all of the obtained NO2 to generate the response signal of total NOx. In comparison with those previously reported total NOx sensors, the proposed total NOx sensor will be featured with a simplified sensor configuration and desirable long-term stability. To confirm the practicability of the proposed strategy, the NO conversion rate of several metal oxides and their composites have been measured and it turns out that the Co3O4/NiO shows relatively high NO conversion rate. Further study indicates a YSZ-based sensor consisting of (Co3O4 + 20 wt % NiO)-SE and Mn-based RE demonstrates satisfactory performance in detecting total NOx. For instance, analogous response magnitude to NO and NO2 as well as the mixture of NO/NO2 (within 35 ppm) is witnessed for the sensor; particularly, the sensor gives acceptable stability and response/recovery rate at the operating temperature of 500 °C within the examined period. In summary, the use of dual functional SE (e.g., Co3O4/NiO composite SE) indeed addressed those issues of concern in monitoring the level of total NOx and has provided a promising alternative way for designing future high-performance total NOx sensor.


Assuntos
Cobalto/química , Técnicas Eletroquímicas , Níquel/química , Óxidos de Nitrogênio/análise , Óxidos/química , Ítrio/química , Zircônio/química , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA