Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4503, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802334

RESUMO

The emergence of glioblastoma in cortical tissue initiates early and persistent neural hyperexcitability with signs ranging from mild cognitive impairment to convulsive seizures. The influence of peritumoral synaptic density, expansion dynamics, and spatial contours of excess glutamate upon higher order neuronal network modularity is unknown. We combined cellular and widefield imaging of calcium and glutamate fluorescent reporters in two glioblastoma mouse models with distinct synaptic microenvironments and infiltration profiles. Functional metrics of neural ensembles are dysregulated during tumor invasion depending on the stage of malignant progression and tumor cell proximity. Neural activity is differentially modulated during periods of accelerated and inhibited tumor expansion. Abnormal glutamate accumulation precedes and outpaces the spatial extent of baseline neuronal calcium signaling, indicating these processes are uncoupled in tumor cortex. Distinctive excitability homeostasis patterns and functional connectivity of local and remote neuronal populations support the promise of precision genetic diagnosis and management of this devastating brain disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Rede Nervosa , Glioblastoma/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/fisiopatologia , Glioblastoma/genética , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Camundongos , Humanos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Masculino , Cálcio/metabolismo , Feminino
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256095

RESUMO

Astrocytes are the most abundant glial cell type in the central nervous system, and they play a crucial role in normal brain function. While gliogenesis and glial differentiation occur during perinatal cerebellar development, the processes that occur during early postnatal development remain obscure. In this study, we conducted transcriptomic profiling of postnatal cerebellar astrocytes at postnatal days 1, 7, 14, and 28 (P1, P7, P14, and P28), identifying temporal-specific gene signatures at each specific time point. Comparing these profiles with region-specific astrocyte differentially expressed genes (DEGs) published for the cortex, hippocampus, and olfactory bulb revealed cerebellar-specific gene signature across these developmental timepoints. Moreover, we conducted a comparative analysis of cerebellar astrocyte gene signatures with gene lists from pediatric brain tumors of cerebellar origin, including ependymoma and medulloblastoma. Notably, genes downregulated at P14, such as Kif11 and HMGB2, exhibited significant enrichment across all pediatric brain tumor groups, suggesting the importance of astrocytic gene repression during cerebellar development to these tumor subtypes. Collectively, our studies describe gene expression patterns during cerebellar astrocyte development, with potential implications for pediatric tumors originating in the cerebellum.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Criança , Feminino , Gravidez , Humanos , Astrócitos , Perfilação da Expressão Gênica , Encéfalo , Transcriptoma , Cerebelo
3.
Front Oncol ; 13: 1156812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287908

RESUMO

Introduction: Surgical resection remains the first-line treatment for gliomas. Several fluorescent dyes are currently in use to augment intraoperative tumor visualization, but information on their comparative effectiveness is lacking. We performed systematic assessment of fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), and indocyanine green (ICG) fluorescence in various glioma models using advanced fluorescence imaging techniques. Methods: Four glioma models were used: GL261 (high-grade model), GB3 (low-grade model), and an in utero electroporation model with and without red fluorescence protein (IUE +RFP and IUE -RFP, respectively) (intermediate-to-low-grade model). Animals underwent 5-ALA, FNa, and ICG injections and craniectomy. Brain tissue samples underwent fluorescent imaging using a wide-field operative microscope and a benchtop confocal microscope and were submitted for histologic analysis. Results: Our systematic analysis showed that wide-field imaging of highly malignant gliomas is equally efficient with 5-ALA, FNa, and ICG, although FNa is associated with more false-positive staining of the normal brain. In low-grade gliomas, wide-field imaging cannot detect ICG staining, can detect FNa in only 50% of specimens, and is not sensitive enough for PpIX detection. With confocal imaging of low-intermediate grade glioma models, PpIX outperformed FNa. Discussion: Overall, compared to wide-field imaging, confocal microscopy significantly improved diagnostic accuracy and was better at detecting low concentrations of PpIX and FNa, resulting in improved tumor delineation. Neither PpIX, FNa, nor ICG delineated all tumor boundaries in studied tumor models, which emphasizes the need for novel visualization technologies and molecular probes to guide glioma resection. Simultaneous administration of 5-ALA and FNa with use of cellular-resolution imaging modalities may provide additional information for margin detection and may facilitate maximal glioma resection.

4.
Neuro Oncol ; 25(3): 471-481, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044040

RESUMO

BACKGROUND: Glioblastoma is the most common and aggressive primary brain tumor. Large-scale sequencing initiatives have cataloged its mutational landscape in hopes of elucidating mechanisms driving this deadly disease. However, a major bottleneck in harnessing this data for new therapies is deciphering "driver" and "passenger" events amongst the vast volume of information. METHODS: We utilized an autochthonous, in vivo screening approach to identify driver, EGFR variants. RNA-Seq identified unique molecular signatures of mouse gliomas across these variants, which only differ by a single amino acid change. In particular, we identified alterations to lipid metabolism, which we further validated through an unbiased lipidomics screen. RESULTS: Our screen identified A289I as the most potent EGFR variant, which has previously not been characterized. One of the mechanisms through which A289I promotes gliomagenesis is to alter cellular triacylglycerides through MTTP. Knockout of Mttp in mouse gliomas, reduces gliomagenesis in multiple models. CONCLUSIONS: EGFR variants that differ by a single amino acid residue differentially promote gliomagenesis. Among the identified mechanism that drives glioma growth include lipid metabolism through MTTP. Understanding triacylglyceride accumulation may present a prospective therapeutic pathway for this deadly disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Animais , Glioblastoma/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Camundongos Knockout , Glioma/tratamento farmacológico , Mutação , Neoplasias Encefálicas/tratamento farmacológico
5.
Proc Natl Acad Sci U S A ; 119(29): e2202015119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858326

RESUMO

Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations; however, the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here, we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). Using our autochthonous mouse models, we found that Sox9 suppresses HGG growth and expands associated H3K27ac states, while promoting ZFTA-RELA (ZRFUS) EPN growth and diminishing H3K27ac states. These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG and an association with the ZRFUS oncofusion in EPN. Mechanistic studies revealed extensive Sox9 and ZRFUS promoter co-occupancy, indicating functional synergy in promoting EPN tumorigenesis. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.


Assuntos
Neoplasias Encefálicas , Ependimoma , Epigênese Genética , Fatores de Transcrição SOX9 , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Ependimoma/genética , Ependimoma/patologia , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/fisiologia
6.
Cancer Res ; 81(10): 2703-2713, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33782098

RESUMO

Germline POT1 mutations are found in a spectrum of cancers and confer increased risk. Recently, we identified a series of novel germline POT1 mutations that predispose carrier families to the development of glioma. Despite these strong associations, how these glioma-associated POT1 mutations contribute to glioma tumorigenesis remains undefined. Here we show that POT1-G95C increases proliferation in glioma-initiating cells in vitro and in progenitor populations in the developing brain. In a native mouse model of glioma, loss of Pot1a/b resulted in decreased survival in females compared with males. These findings were corroborated in human glioma, where low POT1 expression correlated with decreased survival in females. Transcriptomic and IHC profiling of Pot1a/b-deficient glioma revealed that tumors in females exhibited decreased expression of immune markers and increased expression of cell-cycle signatures. Similar sex-dependent trends were observed in human gliomas that had low expression of POT1. Together, our studies demonstrate context-dependent functions for POT1 mutation or loss in driving progenitor proliferation in the developing brain and sexual dimorphism in glioma. SIGNIFICANCE: This study shows that manipulation of POT1 expression in glioma has sex-specific effects on tumorigenesis and associated immune signatures.


Assuntos
Carcinogênese/patologia , Proliferação de Células , Glioma/patologia , Mutação , Caracteres Sexuais , Proteínas de Ligação a Telômeros/metabolismo , Transcriptoma , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Ciclo Celular , Feminino , Glioma/genética , Glioma/imunologia , Glioma/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
7.
J Clin Invest ; 130(5): 2286-2300, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32250339

RESUMO

Seizures often herald the clinical appearance of gliomas or appear at later stages. Dissecting their precise evolution and cellular pathogenesis in brain malignancies could inform the development of staged therapies for these highly pharmaco-resistant epilepsies. Studies in immunodeficient xenograft models have identified local interneuron loss and excess glial glutamate release as chief contributors to network disinhibition, but how hyperexcitability in the peritumoral microenvironment evolves in an immunocompetent brain is unclear. We generated gliomas in WT mice via in utero deletion of key tumor suppressor genes and serially monitored cortical epileptogenesis during tumor infiltration with in vivo electrophysiology and GCAMP7 calcium imaging, revealing a reproducible progression from hyperexcitability to convulsive seizures. Long before seizures, coincident with loss of inhibitory cells and their protective scaffolding, gain of glial glutamate antiporter xCT expression, and reactive astrocytosis, we detected local Iba1+ microglial inflammation that intensified and later extended far beyond tumor boundaries. Hitherto unrecognized episodes of cortical spreading depolarization that arose frequently from the peritumoral region may provide a mechanism for transient neurological deficits. Early blockade of glial xCT activity inhibited later seizures, and genomic reduction of host brain excitability by deleting MapT suppressed molecular markers of epileptogenesis and seizures. Our studies confirmed xenograft tumor-driven pathobiology and revealed early and late components of tumor-related epileptogenesis in a genetically tractable, immunocompetent mouse model of glioma, allowing the complex dissection of tumor versus host pathogenic seizure mechanisms.


Assuntos
Neoplasias Encefálicas , Encéfalo , Sistemas CRISPR-Cas , Glioblastoma , Neoplasias Experimentais , Convulsões , Transmissão Sináptica , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Deleção de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia
8.
Nature ; 578(7793): 166-171, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31996845

RESUMO

Glioblastoma is a universally lethal form of brain cancer that exhibits an array of pathophysiological phenotypes, many of which are mediated by interactions with the neuronal microenvironment1,2. Recent studies have shown that increases in neuronal activity have an important role in the proliferation and progression of glioblastoma3,4. Whether there is reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the mechanisms that underlie how these tumours remodel the neuronal milieu towards increased activity are unknown. Here, using a native mouse model of glioblastoma, we develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. We show that tumours driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodelling of the synaptic constituency. Furthermore, secreted members of the glypican (GPC) family are selectively expressed in these tumours, and GPC3 drives gliomagenesis and hyperexcitability. Together, our studies illustrate the importance of functionally interrogating diverse tumour phenotypes driven by individual, yet related, variants and reveal how glioblastoma alters the neuronal microenvironment.


Assuntos
Neoplasias Encefálicas/enzimologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Glioblastoma/enzimologia , Animais , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Glioblastoma/patologia , Glipicanas/metabolismo , Camundongos
9.
Acta Neuropathol Commun ; 6(1): 12, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458417

RESUMO

Mechanisms underlying sex differences in cancer incidence are not defined but likely involve dimorphism (s) in tumor suppressor function at the cellular and organismal levels. As an example, sexual dimorphism in retinoblastoma protein (Rb) activity was shown to block transformation of female, but not male, murine astrocytes in which neurofibromin and p53 function was abrogated (GBM astrocytes). Correlated sex differences in gene expression in the murine GBM astrocytes were found to be highly concordant with sex differences in gene expression in male and female GBM patients, including in the expression of components of the Rb and p53 pathways. To define the basis of this phenomenon, we examined the functions of the cyclin dependent kinase (CDK) inhibitors, p16, p21 and p27 in murine GBM astrocytes under conditions that promote Rb-dependent growth arrest. We found that upon serum deprivation or etoposide-induced DNA damage, female, but not male GBM astrocytes, respond with increased p16 and p21 activity, and cell cycle arrest. In contrast, male GBM astrocytes continue to proliferate, accumulate chromosomal aberrations, exhibit enhanced clonogenic cell activity and in vivo tumorigenesis; all manifestations of broad sex differences in cell cycle regulation and DNA repair. Differences in tumorigenesis disappeared when female GBM astrocytes are also rendered null for p16 and p21. These data elucidate mechanisms underlying sex differences in cancer incidence and demonstrate sex-specific effects of cytotoxic and targeted therapeutics. This has critical implications for lab and clinical research.


Assuntos
Astrócitos/metabolismo , Transformação Celular Neoplásica/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Caracteres Sexuais , Animais , Astrócitos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Meios de Cultura Livres de Soro/farmacologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Etoposídeo/farmacologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Cariotipagem , Masculino , Camundongos , Neurofibromina 1/deficiência , Neurofibromina 1/genética , Fosforilação , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Proteína do Retinoblastoma/metabolismo , Soro/metabolismo , Transfecção , Células Tumorais Cultivadas
10.
Nat Neurosci ; 20(3): 396-405, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28166219

RESUMO

Astrocytes are the most abundant cell type in the brain, where they perform a wide array of functions, yet the nature of their cellular heterogeneity and how it oversees these diverse roles remains shrouded in mystery. Using an intersectional fluorescence-activated cell sorting-based strategy, we identified five distinct astrocyte subpopulations present across three brain regions that show extensive molecular diversity. Application of this molecular insight toward function revealed that these populations differentially support synaptogenesis between neurons. We identified correlative populations in mouse and human glioma and found that the emergence of specific subpopulations during tumor progression corresponded with the onset of seizures and tumor invasion. In sum, we have identified subpopulations of astrocytes in the adult brain and their correlates in glioma that are endowed with diverse cellular, molecular and functional properties. These populations selectively contribute to synaptogenesis and tumor pathophysiology, providing a blueprint for understanding diverse astrocyte contributions to neurological disease.


Assuntos
Astrócitos/fisiologia , Glioma/fisiopatologia , Sinapses/fisiologia , Aldeído Desidrogenase/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Técnicas de Cocultura , Feminino , Citometria de Fluxo , Glioma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Convulsões/fisiopatologia , Transcriptoma
11.
Development ; 140(7): 1594-604, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23482494

RESUMO

Cell fate specification in the CNS is controlled by the secreted morphogen sonic hedgehog (Shh). At spinal cord levels, Shh produced by both the notochord and floor plate (FP) diffuses dorsally to organize patterned gene expression in dividing neural and glial progenitors. Despite the fact that two discrete sources of Shh are involved in this process, the individual contribution of the FP, the only intrinsic source of Shh throughout both neurogenesis and gliogenesis, has not been clearly defined. Here, we have used conditional mutagenesis approaches in mice to selectively inactivate Shh in the FP (Shh(FP)) while allowing expression to persist in the notochord, which underlies the neural tube during neurogenesis but not gliogenesis. We also inactivated Smo, the common Hh receptor, in neural tube progenitors. Our findings confirm and extend prior studies suggesting an important requirement for Shh(FP) in specifying oligodendrocyte cell fates via repression of Gli3 in progenitors. Our studies also uncover a connection between embryonic Shh signaling and astrocyte-mediated reactive gliosis in adults, raising the possibility that this pathway is involved in the development of the most common cell type in the CNS. Finally, we find that intrinsic spinal cord Shh signaling is required for the proper formation of the ependymal zone, the epithelial cell lining of the central canal that is also an adult stem cell niche. Together, our studies identify a crucial late embryonic role for Shh(FP) in regulating the specification and differentiation of glial and epithelial cells in the mouse spinal cord.


Assuntos
Padronização Corporal/genética , Diferenciação Celular/genética , Epêndima/embriologia , Proteínas Hedgehog/fisiologia , Neuroglia/fisiologia , Medula Espinal/embriologia , Animais , Embrião de Mamíferos , Epêndima/citologia , Epêndima/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Transgênicos , Placa Neural/embriologia , Placa Neural/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neuroglia/metabolismo , Notocorda/embriologia , Notocorda/metabolismo , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA