Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067021

RESUMO

The suitable dietary L-lysine concentration for coho salmon (Oncorhynchus kisutch) alevins was assessed by a dose response feeding trial. Six experimental diets were made with graded L-lysine concentrations of 2.29%, 2.81%, 3.32%, 3.80%, 4.27%, and 4.78% of the dry matter, respectively, each of which was fed to triplicate groups of 100 alevins (initial body weight: 0.30 ± 0.01 g) in 18 plastic baskets (water volume 240 L). The alevins were cultured in a flowing freshwater system and fed manually to apparent satiation four times a day for 12 weeks. The survival rate of alevins did not differ significantly among the dietary groups. The specific growth rate (SGR), protein efficiency ratio (PER), and body protein deposition (BPD) increased significantly (p < 0.05) with the increase in dietary lysine concentration up to 3.80% and then reduced as lysine level further increased. The feed conversion ratio (FCR) had an inverse trend to SGR. The whole-body crude protein content of the alevins increased significantly with increasing dietary lysine level, while crude lipid content showed the opposite trend. In comparison, the contents of morphological indices, whole-body moisture, and ash were not affected significantly (p > 0.05) by the different dietary lysine concentrations. The highest contents of lysine, arginine, and total essential amino acids (EAAs) were observed in the group with 4.27% dietary lysine concentration, which did not differ significantly from those in the 3.32%, 3.80%, and 4.78% groups but was significantly higher than those in the 2.29% and 2.81% groups. Similarly, valine had the highest content in the group with 4.78%. The variations in dietary lysine had no significant impacts on other EAA and non-EAA contents except glycine, which increased with increasing dietary lysine level. Second-order polynomial model analyses based on SGR, PER, BPD, and FCR evaluated the optimum L-lysine requirements of coho salmon alevins as 3.74%, 3.73%, 3.91%, and 3.77% of the diet or 6.80%, 6.78%, 7.11%, and 6.85% of dietary proteins, respectively.

2.
Animals (Basel) ; 13(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37685053

RESUMO

The present study evaluated the effects of partially substituting fish meal (FM) with poultry by-product meal (PBPM) on the growth, muscle composition, and tissue biochemical parameters of coho salmon (Oncorhynchus kisutch) post-smolts. Five isonitrogenous (7.45% nitrogen) and isoenergetic (18.61 MJ/kg gross energy) experimental diets were made by substituting 0%, 10%, 20%, 40%, and 60% FM protein with PBPM protein, which were designated accordingly as PBPM0 (the control), PBPM10, PBPM20, PBPM40, and PBPM60, respectively. Each diet was fed to triplicates of ten post-smolts (initial individual body weight, 180.13 ± 1.32 g) in three floating cages three times daily (6:50, 11:50, and 16:50) to apparent satiation for 84 days. Both specific growth rate (SGR) and protein efficiency ratio did not differ significantly (p > 0.05) among the control, PBPM10, and PBPM20 groups, which were remarkably (p < 0.05) higher than those of the PBPM40 and PBPM60 groups. Feed conversion ratio varied inversely with SGR. The PBPM replacement had no remarkable effects on the morphological indices and proximal muscle components. The control and PBPM10 groups led to significantly higher muscle contents of leucine, lysine, and methionine than groups of higher PBPM inclusion. The groups of PBPM40 and PBPM60 obtained significantly (p < 0.05) higher serum alanine aminotransferase and aspartate aminotransferase activities than the control and low PBPM inclusion groups. The control group had significantly higher albumin and total cholesterol contents than the groups with PBPM inclusion. The control group had significantly higher triglycerides content than the PBPM60 group. The PBPM60 group had significantly lower contents of high-density lipoprotein, low-density lipoprotein, and total protein than the control and PBPM10 groups. The high PBPM replacement level up to 40% and 60% had adverse effects on hepatic malondialdehyde levels. The catalase and superoxide dismutase activities were not affected by low PBPM inclusion, but significantly decreased in high-PBPM-inclusion groups. Based on broken-line regression analysis of SGR and PER, the optimum dietary PBPM replacing level was evaluated to be 16.63-17.50% of FM protein for coho salmon post-smolts.

3.
Animals (Basel) ; 12(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36428445

RESUMO

The present study investigated the effects of dietary riboflavin on growth performance, body composition and anti-oxidative capacity of coho salmon (Oncorhynchus kisutch) post-smolts. Seven experimental diets were formulated with graded riboflavin levels of 0.00, 3.96, 8.07, 16.11, 31.81, 63.67 and 126.69 mg/kg, respectively. Each diet was fed to triplicate groups of 10 fish with an individually initial mean body weight of 186.22 ± 0.41 g in 21 cages (water volume, 1000-L/cage) and fed three times daily (7:30, 12:30 and 17:30) to apparent satiation for 12 weeks. Fish fed a diet with 31.81 mg/kg riboflavin had the highest specific growth rate (SGR), which was significantly higher than fish-fed diets with 0.00, 3.96, 8.07 and 126.69 mg/kg riboflavin (p < 0.05). Feed conversion ratio showed an inverse trend with SGR. No significant differences were observed in condition factor, hepatosomatic index, viscerosomatic index, muscle moisture, crude protein and ash contents among dietary groups. Muscle lipid had the highest content in the 31.81 mg/kg group and was significantly higher (p < 0.05) than those in the 0.00, 3.96 and 8.07 mg/kg groups. The alanine aminotransferase, aspartate aminotransferase and malondialdehyde contents in the liver and serum of fish were significantly decreased with the increase in dietary riboflavin level up to 31.81 mg/kg, and then increased as dietary riboflavin level further increased. An inverse trend was observed for total superoxide dismutase and catalase activities. Serum total cholesterol and triglyceride levels were significantly decreased with the dietary of riboflavin levels up to 31.81 and 63.67 mg/kg, respectively. The cubic curve regression analysis based on SGR indicated that the optimum dietary riboflavin level was estimated to be 35.26 mg/kg for coho salmon post-smolts.

4.
Animals (Basel) ; 12(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230371

RESUMO

A 12-week feeding trial aimed to evaluate the effects of dietary linoleic acid (LA, 18:2n-6) on the growth performance, fatty acid profile, and lipid metabolism enzyme activities of coho salmon (Oncorhynchus kisutch) alevins. Six experimental diets (47% crude protein and 15% crude lipid) were formulated to contain graded LA levels of 0.11%, 0.74%, 1.37%, 2.00%, 2.63%, and 3.26%. Each diet was fed to triplicate groups of 50 alevins with an initial body weight of 0.364 ± 0.002 g, which were randomly assigned to 18 white plastic tanks (0.8 × 0.6 × 0.6 m, 240 L/tank). Fish were reared in a freshwater flow-through rearing system and fed to apparent satiation four times daily. The survival rate was not significantly different among the treatments (p > 0.05). However, the 1.37% LA group significantly improved the final body weight and specific growth rate (SGR) (p < 0.05) of alevins. The feed conversion ratio (FCR) in the 1.37% LA group was significantly lower than those in other groups (p < 0.05). The whole-body lipid content significantly decreased (p < 0.05) with dietary LA levels increasing from 0.74% to 2.00%. The fatty acid composition of the total lipid in muscle was closely correlated with those in the diets. The dietary LA level of 1.37% led to significantly higher activities of liver lipoprotein lipase (LPL) and hepatic lipase (HL) than those of other groups (p < 0.05). Hepatic malate dehydrogenase (MDH) and fatty acid synthase (FAS) decreased with the increase in the dietary LA levels from 0.11% to 1.37%. The lowest MDH and FAS activities were obtained in the 1.37% LA group (p < 0.05). This study indicated that an appropriate amount of dietary LA was beneficial for the growth and lipid metabolism of coho salmon alevins, and the results of the quadratic regression analysis of the SGR and FCR indicated that the optimal dietary LA requirements were 1.25% and 1.23% for coho salmon alevins, respectively.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807641

RESUMO

Due to their outstanding optical properties and superior charge carrier mobilities, organometal halide perovskites have been widely investigated in photodetection and solar cell areas. In perovskites photodetection devices, their high optical absorption and excellent quantum efficiency contribute to the responsivity, even the specific detectivity. In this work, we developed a lateral phototransistor based on mesoscopic graphene/perovskite heterojunctions. Graphene nanowall shows a porous structure, and the spaces between graphene nanowall are much appropriated for perovskite crystalline to mount in. Hot carriers are excited in perovskite, which is followed by the holes' transfer to the graphene layer through the interfacial efficiently. Therefore, graphene plays the role of holes' collecting material and carriers' transporting channel. This charge transfer process is also verified by the luminescence spectra. We used the hybrid film to build phototransistor, which performed a high responsivity and specific detectivity of 2.0 × 103 A/W and 7.2 × 1010 Jones, respectively. To understand the photoconductive mechanism, the perovskite's passivation and the graphene photogating effect are proposed to contribute to the device's performance. This study provides new routes for the application of perovskite film in photodetection.

6.
Eur Biophys J ; 48(3): 261-266, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30826854

RESUMO

Solid-state nanopores are considered an attractive basis for single-molecule DNA sequencing. At present, one obstacle to be overcome is the improvement of their temporal resolution, with the DNA molecules remaining in the sensing volume of the nanopore for a long period of time. Here, we used a composite system of a concentration gradient of LiCl in solution and a nanofiber mesh to slow the DNA perforation speed. Compared to different alkali metal solutions with the same concentration, LiCl can extend the dwell time to 20 ms, five times longer than NaCl and KCl. Moreover, as the concentration gradient increases, the dwell time can be tuned from dozens of milliseconds to more than 100 ms. When we introduce a nanofiber mesh layer on top of the pore in the asymmetric solution, the DNA molecules get retarded by 162-185 [Formula: see text]s/nt, which is three orders of magnitude slower than the bare nanopore. At the same time, because the molecule absorption region becomes larger at the pore vicinity, the higher molecule capture rate improves the detection efficiency.


Assuntos
DNA/química , Eletroforese/instrumentação , Cloreto de Lítio/química , Movimento (Física) , Nanofibras , DNA/genética , Cinética , Análise de Sequência de DNA
7.
Nanotechnology ; 28(27): 275203, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28616939

RESUMO

Two-dimensional molybdenum disulfide (MoS2) is a promising material for ultrasensitive photodetectors owing to its tunable band gap and high absorption coefficient. However, controlled synthesis of high-quality, large-area monolayer molybdenum disulfide (MoS2) is still a challenge in practical application. In this work, we report a gold foil assistant chemical vapor deposition method for the synthesis of large-size (>400 µm) single-crystal MoS2 film on a silicon dioxide (SiO2) substrate. The influence of Au foil in enlarging the size of single-crystal MoS2 is investigated systemically using thermal simulation in Ansys workbench 16.0, including thermal conductivity, temperature difference and thermal relaxation time of the interface of SiO2 substrate and Au foil, which indicate that Au foil can increase the temperature of the SiO2 substrate rapidly and decrease the temperature difference between the oven and substrate. Finally, the properties of the monolayer MoS2 film are further confirmed using back-gated field-effect transistors: a high photoresponse of 15.6 A W-1 and a fast photoresponse time of 100 ms. The growth techniques described in this study could be beneficial for the development of other atomically thin two-dimensional transition metal dichalcogenide materials.

8.
Nanotechnology ; 28(31): 315501, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28604366

RESUMO

We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor's oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s-1), a large index range (1.0 µM to 10.0 mM) and a low detection limit (1.0 µM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.

9.
Nanotechnology ; 28(11): 115501, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28140339

RESUMO

We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the aid of nanofabrication technology. Then a stamping transfer method was used to replicate the micropattern of the unpolished silicon wafer. Due to the large contact interface between the 3D graphene network and the PDMS, this type of E-skin worked under a stretching ratio of nearly 100%, and showed excellent mechanical strength and high sensitivity, with a change in relative resistance of up to 6500% and a gauge factor of 65.9 at 99.64% strain. Furthermore, the E-skin exhibited an obvious highly sensitive response to joint movement, eye movement and sound vibration, demonstrating broad potential applications in healthcare, body monitoring and wearable devices.

10.
ACS Appl Mater Interfaces ; 8(26): 16869-75, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27269362

RESUMO

Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA