Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 33(6): 1387-1399, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30575821

RESUMO

Acute promyelocytic leukemia (APL) is characterized by t(15;17)(q22;q21), resulting in a PML-RARA fusion that is the master driver of APL. A few cases that cannot be identified with PML-RARA by using conventional methods (karyotype analysis, FISH, and RT-PCR) involve abnormal promyelocytes that are fully in accordance with APL in morphology, cytochemistry, and immunophenotype. To explore the mechanisms involved in pathogenesis and recurrence of morphologically diagnosed APL, we performed comprehensive variant analysis by next-generation sequencing in 111 pediatric patients morphologically diagnosed as APL. Structural variant (SV) analysis in 120 DNA samples from both diagnosis and relapse stage identified 95 samples with RARA rearrangement (including 94 with PML-RARA and one with NPM-RARA) and two samples with KMT2A rearrangement. In the eligible 13 RNA samples without any RARA rearrangement at diagnosis, one case each with CPSF6-RARG, NPM1-CCDC28A, and TBC1D15-RAB21 and two cases with a TBL1XR1-RARB fusion were discovered. These uncovered fusion genes strongly suggested their contributions to leukemogenesis as driver alternations and APL phenotype may arise by abnormalities of other members of the nuclear receptor superfamily involved in retinoid signaling (RARB or RARG) or even by mechanisms distinct from the formation of aberrant retinoid receptors. Single-nucleotide variant (SNV) analysis in 77 children (80 samples) with RARA rearrangement showed recurrent alternations of primary APL in FLT3, WT1, USP9X, NRAS, and ARID1A, with a strong potential for involvement in pathogenesis, and WT1 as the only recurrently mutated gene in relapsed APL. WT1, NPM1, NRAS, FLT3, and NSD1 were identified as recurrently mutated in 17 primary samples without RARA rearrangement and WT1, NPM1, TP53, and RARA as recurrently mutated in 9 relapsed samples. The survival of APL with RARA rearrangement is much better than without RARA rearrangement. Thus, patients morphologically diagnosed as APL that cannot be identified as having a RARA rearrangement are more reasonably classified as a subclass of AML other than APL, and individualized treatment should be considered according to the genetic abnormalities.


Assuntos
Biomarcadores Tumorais/genética , Células Precursoras de Granulócitos/patologia , Leucemia Promielocítica Aguda/genética , Mutação , Recidiva Local de Neoplasia/genética , Proteínas de Fusão Oncogênica/genética , Translocação Genética , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Precursoras de Granulócitos/metabolismo , Humanos , Lactente , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Masculino , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/tratamento farmacológico , Nucleofosmina , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
2.
Acta Pharmacol Sin ; 39(2): 311-327, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28905938

RESUMO

Triptolide (TP), an oxygenated diterpene, has a variety of beneficial pharmacodynamic activities but its clinical applications are restricted due to severe testicular injury. This study aimed to delineate the molecular mechanisms of TP-induced testicular injury in vitro and in vivo. TP (5-50000 nmol/L) dose-dependently decreased the viability of TM4 Sertoli cells with an IC50 value of 669.5-269.45 nmol/L at 24 h. TP (125, 250, and 500 nmol/L) dose-dependently increased the accumulation of ROS, the phosphorylation of JNK, mitochondrial dysfunction and activation of the intrinsic apoptosis pathway in TM4 cells. These processes were attenuated by co-treatment with the antioxidant N-acetyl cysteine (NAC, 1 mmol/L). Furthermore, TP treatment inhibited the translocation of Nrf2 from cytoplasm into the nucleus as well as the expression of downstream genes NAD(P)H quinone oxidoreductase1 (NQO1), catalase (CAT) and hemeoxygenase 1 (HO-1), thus abrogating Nrf2-mediated defense mechanisms against oxidative stress. Moreover, siRNA knockdown of Nrf2 significantly potentiated TP-induced apoptosis of TM4 cells. The above results from in vitro experiments were further validated in male mice after oral administration of TP (30, 60, and 120 mg·kg-1·d-1, for 14 d), as evidenced by the detected indexes, including dose-dependently decreased SDH activity, increased MDA concentration, altered testicle histomorphology, elevated caspase-3 activation, apoptosis induction, increased phosphorylation of JNK, and decreased gene expression of NQO1, CAT and HO-1 as well as nuclear protein expression of Nrf2 in testicular tissue. Our results demonstrate that TP activates apoptosis of Sertoli cells and injury of the testis via the ROS/JNK-mediated mitochondrial-dependent apoptosis pathway and down-regulates Nrf2 activation.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/efeitos adversos , Fenantrenos/efeitos adversos , Células de Sertoli/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Citocromos c/metabolismo , Compostos de Epóxi/efeitos adversos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/patologia , Transdução de Sinais/efeitos dos fármacos , Testículo/patologia , Proteína X Associada a bcl-2/metabolismo
3.
Nat Nanotechnol ; 11(7): 613-20, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26974957

RESUMO

Methamphetamine (METH) abuse is a serious social and health problem worldwide. At present, there are no effective medications to treat METH addiction. Here, we report that aggregated single-walled carbon nanotubes (aSWNTs) significantly inhibited METH self-administration, METH-induced conditioned place preference and METH- or cue-induced relapse to drug-seeking behaviour in mice. The use of aSWNTs alone did not significantly alter the mesolimbic dopamine system, whereas pretreatment with aSWNTs attenuated METH-induced increases in extracellular dopamine in the ventral striatum. Electrochemical assays suggest that aSWNTs facilitated dopamine oxidation. In addition, aSWNTs attenuated METH-induced increases in tyrosine hydroxylase or synaptic protein expression. These findings suggest that aSWNTs may have therapeutic effects for treatment of METH addiction by oxidation of METH-enhanced extracellular dopamine in the striatum.


Assuntos
Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Dopamina/metabolismo , Metanfetamina/farmacologia , Nanotubos de Carbono , Animais , Peso Corporal/efeitos dos fármacos , Corpo Estriado/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA