Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bone ; 185: 117114, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723878

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) may contribute to osteoporosis. Berberine is a traditional Chinese medicine and was recently shown to be beneficial in NAFLD. However, little is known about its impact on bone loss induced by NAFLD. AIM: We aimed to explore the role of berberine in bone loss and determine its underlying mechanisms in NAFLD. METHODS: C57BL/6 mice were fed a high-fat high-fructose high-glucose diet (HFFGD) for 16 weeks to establish a NAFLD mouse model. The mice were administered berberine (300 mg/kg/d) by gavage, and fatty liver levels and bone loss indicators were tested. RESULTS: Berberine significantly improved HFFGD-induced weight gain, hepatic lipid accumulation and increases in serum liver enzymes, thereby alleviating NAFLD. Berberine increased trabecular number (Tb. N), trabecular thickness (Tb. Th), bone volume to tissue volume ratio (BV/TV), and decreased trabecular separation (Tb. Sp) and restored bone loss in NAFLD. Mechanistically, berberine significantly inhibited ferroptosis and 4-hydroxynonenal (4-HNE), prostaglandin-endoperoxide synthase 2 (PTGS2), and transferrin (TF) levels and increased ferritin heavy chain (FTH) levels in the femurs of HFFGD-fed mice. Moreover, berberine also activated the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling pathway. CONCLUSION: Berberine significantly ameliorates bone loss induced by NAFLD by activating the SLC7A11/GSH/GPX4 signaling pathway and inhibiting ferroptosis. Therefore, berberine may serve as a therapeutic agent for NAFLD-induced bone loss.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38744472

RESUMO

BACKGROUND AND AIM: Cenicriviroc (CVC) is a CCR2/CCR5 antagonist that has been shown to be effective in the treatment of inflammatory and fibrotic diseases. Our study evaluated its efficacy in colitis. METHODS: Mouse models of DSS-induced acute and chronic colitis were established. The efficacy of CVC in colitis was assessed by disease activity index (DAI) scores, histological assessment of inflammation and fibrosis, and expression assays of key molecules. In in vitro experiments, HT29 cell line was exposed to TNFα to study inflammatory signaling in intestinal epithelial cells. CCD-18Co colonic myofibroblasts and human primary colonic fibroblasts were activated by TGFß1 to mimic fibroblast activation. RESULTS: In HT29 cells, CVC significantly reduced mRNA expression of CCL5 (P < 0.01) but had no effect on CCL2. Furthermore, CVC reduced downstream CX3CL1 (P < 0.01) and TNFα (P < 0.05) expression, thereby inhibiting inflammatory progression. In acute colitis mice, CVC significantly reduced DAI scores and serum TNFα levels (P < 0.05) and attenuated colonic inflammation as shown by HE staining. Meanwhile, CVC had no adverse effects on the liver, heart, and kidney of mice. On the other hand, in cellular models of chronic colitis, CVC decreased the expression of fibrosis markers, including FN, CTGF, α-SMA, and MMP9, and inhibited TGFß1-induced fibrotic activation (P < 0.01). In addition, CVC attenuated colonic fibrosis in chronic colitis mice. Moreover, CVC significantly promoted autophagy, which contributed to its regulation of inflammation. CONCLUSIONS: CVC significantly inhibited inflammation through CCL5/CCR5 signaling without damaging vital organs and suppressed fibrotic activation in chronic colitis, suggesting its great potential to relieve colonic inflammation and fibrosis.

3.
Plant Cell Rep ; 43(3): 76, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381221

RESUMO

KEY MESSAGE: GhHB14_D10 and GhREV_D5 regulated secondary cell wall formation and played an important role in fiber development. Cotton serves as an important source of natural fiber, and the biosynthesis of the secondary cell wall plays a pivotal role in determining cotton fiber quality. Nevertheless, the intricacies of this mechanism in cotton fiber remain insufficiently elucidated. This study investigates the functional roles of GhHB14_D10 and GhREV_D5, two HD-ZIP III transcription factors, in secondary cell wall biosynthesis in cotton fibers. Both GhHB14_D10 and GhREV_D5 were found to be localized in the nucleus with transcriptional activation activity. Ectopic overexpression of GhHB14_D10 and GhREV_D5 in Arabidopsis resulted in changed xylem differentiation, secondary cell wall deposition, and expression of genes related to the secondary cell wall. Silencing of GhHB14_D10 and GhREV_D5 in cotton led to enhanced fiber length, reduced cell wall thickness, cellulose contents and expression of secondary cell wall-related genes. Moreover, GhHB14_D10's direct interaction with GhREV_D5, and transcriptional regulation of cellulose biosynthesis genes GhCesA4-4 and GhCesA7-2 revealed their collaborative roles in secondary cell wall during cotton fiber development. Overall, these results shed light on the roles of GhHB14_D10 and GhREV_D5 in secondary cell wall biosynthesis, offering a strategy for the genetic improvement of cotton fiber quality.


Assuntos
Arabidopsis , Fibra de Algodão , Fatores de Transcrição/genética , Gossypium/genética , Arabidopsis/genética , Parede Celular , Celulose
4.
Bioeng Transl Med ; 8(6): e10579, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023697

RESUMO

Currently, there are no effective therapies for intestinal and hepatic fibrosis representing a considerable unmet need. Breakthroughs in pathogenesis have accelerated the development of anti-fibrotic therapeutics in recent years. Particularly, with the development of nanotechnology, the harsh environment of the gastrointestinal tract and inaccessible microenvironment of fibrotic lesions seem to be no longer considered a great barrier to the use of anti-fibrotic drugs. In this review, we comprehensively summarize recent preclinical and clinical studies on intestinal and hepatic fibrosis. It is found that the targets for preclinical studies on intestinal fibrosis is varied, which could be divided into molecular, cellular, and tissues level, although little clinical trials are ongoing. Liver fibrosis clinical trials have focused on improving metabolic disorders, preventing the activation and proliferation of hepatic stellate cells, promoting the degradation of collagen, and reducing inflammation and cell death. At the preclinical stage, the therapeutic strategies have focused on drug targets and delivery systems. At last, promising remedies to the current challenges are based on multi-modal synergistic and targeted delivery therapies through mesenchymal stem cells, nanotechnology, and gut-liver axis providing useful insights into anti-fibrotic strategies for clinical use.

5.
Sci Rep ; 13(1): 10946, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414929

RESUMO

Liver fibrosis is caused by chronic hepatic injury and may lead to cirrhosis, and even hepatocellular carcinoma. When hepatic stellate cells (HSCs) are activated by liver injury, they transdifferentiate into myofibroblasts, which secrete extracellular matrix proteins that generate the fibrous scar. Therefore, it is extremely urgent to find safe and effective drugs for HSCs activation treatment to prevent liver against fibrosis. Here, we reported that PDZ and LIM domain protein 1 (PDLIM1), a highly conserved cytoskeleton organization regulator, was significantly up-regulated in fibrotic liver tissues and TGF-ß-treated HSC-T6 cells. Through transcriptome analysis, we found that knockdown of PDLIM1 resulted in a significant downregulation of genes related to inflammation and immune-related pathways in HSC-T6 cells. Moreover, PDLIM1 knockdown significantly inhibited the activation of HSC-T6 cells and the trans-differentiation of HSC-T6 cells into myofibroblasts. Mechanistically, PDLIM1 is involved in the regulation of TGF-ß-mediated signaling pathways in HSCs activation. Thus, targeting PDLIM1 may provide an alternative method to suppress HSCs activation during liver injury. CCCTC-binding factor (CTCF), a master regulator of genome architecture, is upregulated during HSCs activation. PDLIM1 knockdown also indirectly reduced CTCF protein expression, however, CTCF binding to chromatin was not significantly altered by CUT&Tag analysis. We speculate that CTCF may cooperate with PDLIM1 to activate HSCs in other ways. Our results suggest that PDLIM1 can accelerate the activation of HSCs and liver fibrosis progression and could be a potential biomarker for monitoring response to anti-fibrotic therapy.


Assuntos
Neoplasias Hepáticas , Transdução de Sinais , Humanos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Hepáticas/patologia
6.
Liver Int ; 43(2): 500-512, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36371672

RESUMO

BACKGROUND: Biglycan (BGN) is a small leucine-rich proteoglycan that participates in the production of excess extracellular matrix (ECM) and is related to fibrosis in many organs. However, the role of BGN in liver fibrosis remains poorly understood. This study aimed to investigate the role and mechanism of BGN in liver fibrosis. METHODS: Human liver samples, Bgn-/0 (BGN KO) mice and a human LX-2 hepatic stellate cells (HSCs) model were applied for the study of experimental fibrosis. GEO data and single-cell RNA-seq data of human liver tissue were analysed as a bioinformatic approach. Coimmunoprecipitation, immunofluorescence staining, western blotting and qRT-PCR were conducted to identify the regulatory effects of BGN on heat shock protein 47 (HSP47) expression and liver fibrosis. RESULTS: We observed that hepatic BGN expression was significantly increased in patients with fibrosis and in a mouse model of liver fibrosis. Genetic deletion of BGN disrupted TGF-ß1 pathway signalling and alleviated liver fibrosis in mice administered carbon tetrachloride (CCl4 ). siRNA-mediated knockdown of BGN significantly reduced TGF-ß1-induced ECM deposition and fibroblastic activation in LX-2 cells. Mechanistically, BGN directly interacted with and positively regulated the collagen synthesis chaperon protein HSP47. Rescue experiments showed that BGN promoted hepatic fibrosis by regulating ECM deposition and HSC activation by positively regulating HSP47. CONCLUSION: Our data indicate that BGN promotes hepatic fibrosis by regulating ECM deposition and HSC activation through an HSP47-dependent mechanism. BGN may be a new biomarker of hepatic fibrosis and a novel target for disease prevention and treatment.


Assuntos
Biglicano , Proteínas de Choque Térmico HSP47 , Cirrose Hepática , Animais , Humanos , Camundongos , Biglicano/metabolismo , Fibrose , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta1/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo
7.
Dis Markers ; 2022: 1724301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124029

RESUMO

Background: Several studies have demonstrated that acetylation was involved in the process of liver cancer. This study aimed to establish an effective predictive prognostic model using acetylation regulation genes in liver cancer. Methods: Two datasets were downloaded from the Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database. Differentially expressed acetylation regulation genes were identified in the TCGA-LIHC dataset, and then, Gene Ontology (GO) functional annotation analysis was used to investigate the molecular mechanism. After grouping the patients into clusters based on consensus clustering, we explored the correlation between clusters and clinical characteristics. A risk model was constructed by the least absolute shrinkage and selection operator (LASSO) regression analysis to calculate the risk score. Patients were divided into high-risk and low-risk groups according to the risk score using the acetylation regulation genes. Data downloaded from LIRI-JP were used for external validation. Univariate and multivariate Cox regressions were performed to identify independent risk factors. A prognostic nomogram was constructed according to the TCGA-LIHC dataset. The effect of HDAC11 expression on the proliferation and migration of liver cancer was detected by the CCK-8 method and cell scratch test, respectively. Results: Eleven of 29 acetylation regulation genes were identified as upregulated differentially expressed genes. Go enrichment analysis showed that they were involved in "protein and histone deacylation and deacetylation." Patients were categorized into two clusters according to the expression of 29 acetylation regulation genes. Compared with cluster 2, cluster 1 correlated with shorter overall survival (OS) and higher expression. Stage, T stage, grade, gender, age, and follow-up state were significantly different between two clusters. Pathways involved in DNA repair were significantly enriched in cluster 1. The risk score was calculated by HDAC1, HDAC2, HDAC4, HDAC11, HAT1, and SIRT6. Patients in the high-risk group had a worse prognosis in both datasets. Risk score was not only an independent prognostic marker but could also predict the clinicopathological features of liver cancer. A nomogram containing risk score, T stage, and M stage was built to predict overall survival. After transfection with HDAC11 overexpression plasmid, the proliferation ability of HepG2 cells increased, while the migration ability had no change. Conclusions: Our findings suggested that acetylation regulation genes contribute to malignant progression and have a clinical prognostic impact on liver cancer.


Assuntos
Neoplasias Hepáticas , Sirtuínas , Acetilação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Prognóstico , Sirtuínas/metabolismo
8.
Redox Biol ; 56: 102469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126419

RESUMO

BACKGROUND & AIMS: Excessive inflammatory responses and oxidative stress are considered the main characteristics of inflammatory bowel disease (IBD). Endogenous hydrogen sulfide (H2S) has been reported to show anti-inflammatory activity in IBD. The main aim of this study was to explore the role of 3-mercaptopyruvate sulfurtransferase (MPST), a key enzyme that regulates endogenous H2S biosynthesis, in IBD. METHODS: Colonic MPST expression was evaluated in mice and patients with IBD. Various approaches were used to explore the concrete mechanism underlying MPST regulation of the progression of colitis through in vivo and in vitro models. RESULTS: MPST expression was markedly decreased in colonic samples from patients with ulcerative colitis (UC) or Crohn's disease (CD) and from mice treated with DSS. MPST deficiency significantly aggravated the symptoms of murine colitis, exacerbated inflammatory responses and apoptosis, and inhibited epithelium stem cell-derived organoid formation in an H2S-independent manner. Consistently, when HT29 cells were treated with TNF-α, inhibition of MPST significantly increased the expression of proinflammatory cytokines, the amount of ROS and the prevalence of apoptosis, whereas overexpression of MPST markedly improved these effects. RNA-seq analysis showed that MPST might play a role in regulating apoptosis through AKT signaling. Mechanistically, MPST directly interacted with AKT and reduced the phosphorylation of AKT. Additionally, MPST expression was positively correlated with AKT expression in human IBD samples. In addition, overexpression of AKT rescued IEC apoptosis caused by MPST deficiency, while inhibition of AKT significantly aggravated it. CONCLUSIONS: MPST protects the intestines from inflammation most likely by regulating the AKT/apoptosis axis in IECs. Our results may provide a novel therapeutic strategy for the treatment of colitis.


Assuntos
Colite , Sulfeto de Hidrogênio , Doenças Inflamatórias Intestinais , Proteínas Proto-Oncogênicas c-akt , Sulfurtransferases , Animais , Apoptose , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Citocinas , Sulfato de Dextrana , Células Epiteliais/metabolismo , Células HT29 , Humanos , Sulfeto de Hidrogênio/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Sulfurtransferases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
Hepatol Int ; 16(5): 1064-1074, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36006548

RESUMO

BACKGROUND: Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide. The important role of urid acid (UA) in MAFLD has been widely investigated. Our previous studies unveiled the elevation of serum UA levels independently predicts an increased risk of incident MAFLD. However, the role of intrahepatic UA in MAFLD has not been investigated yet. Glucose transporter 9 (GLUT9) is a key transporter that mediates the uptake of UA in hepatocytes. METHODS: In this study, we first explored the clinical association between GLUT9 polymorphism and MAFLD. Blood samples of 247 male Chinese (127 were MAFLD patients) were collected and tested for the blood UA levels and genotype of the single nucleotide polymorphism (SNP) of GLUT9 (rs1014290). Next, Glut9 hepatic-specific knockout mice (Glut9Hep-ko) were generated to investigate the role of hepatic GLUT9 in MAFLD in male mice. RESULTS: We found that the GA/AA genotypes (rs1014290) were associated with elevated serum UA levels in MAFLD patients. Meanwhile, we found that Glut9Hep-ko mice displayed lower intrahepatic UA levels, down-regulated lipogenesis genes expressions, and attenuated MAFLD symptoms after 12 weeks of high-fat diet feeding, compared with Glut9Fl/Fl littermates. However, Glut9Hep-ko mice and wild-type littermates showed no significant difference on hepatic fatty acid oxidation or inflammation. CONCLUSIONS: Our results suggested that GLUT9 polymorphism was significantly associated with MAFLD, and hepatic-specific knockout of Glut9 significantly decreased intrahepatic contents and ameliorated diet-induced MAFLD in mice.


Assuntos
Fígado Gorduroso , Proteínas Facilitadoras de Transporte de Glucose , Ácido Úrico , Animais , Ácidos Graxos , Fígado Gorduroso/diagnóstico , Genótipo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único
10.
BMC Genomics ; 23(1): 483, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780101

RESUMO

BACKGROUND: Zinc finger protein 143(ZNF143), a member of the Krüppel C2H2-type zinc finger protein family, is strongly associated with cell cycle regulation and cancer development. A recent study suggested that ZNF143 plays as a transcriptional activator that promotes hepatocellular cancer (HCC) cell proliferation and cell cycle transition. However, the exact biological role of ZNF143 in liver regeneration and normal liver cell proliferation has not yet been investigated. METHODS: In our study, we constructed a stable rat liver cell line (BRL-3A) overexpressing ZNF143 and then integrated RNA-seq and Cleavage Under Targets and Tagmentation (CUT&Tag) data to identify the mechanism underlying differential gene expression. RESULTS: Our results show that ZNF143 expression is upregulated during the proliferation phase of liver regeneration after 2/3 partial hepatectomy (PH). The cell counting kit-8 (CCK-8) assay, EdU staining and RNA-seq data analyses revealed that ZNF143 overexpression (OE) significantly inhibited BRL-3A cell proliferation and cell cycle progression. We then performed CUT&Tag assays and found that approximately 10% of ZNF143-binding sites (BSs) were significantly changed genome-wide by ZNF143 OE. However, CCCTC-binding factor (CTCF) binding to chromatin was not affected. Interestingly, the integration analysis of RNA-seq and CUT&Tag data showed that some of genes affected by ZNF143 differential BSs are in the center of each gene regulation module. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these genes are critical in the maintenance of cell identity. CONCLUSION: These results indicated that the expression level of ZNF143 in the liver is important for the maintenance of cell identity. ZNF143 plays different roles in HCC and normal liver cells and may be considered as a potential therapeutic target in liver disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Proliferação de Células/genética , Ratos , Transativadores/genética , Transativadores/metabolismo
11.
Curr Issues Mol Biol ; 44(7): 3156-3165, 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35877442

RESUMO

Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, cell signal transduction, and apoptosis. Mitochondrial dysfunction is manifested in different aspects, like increased mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, adenosine triphosphate (ATP) synthesis disorder, abnormal mitophagy, as well as changes in mitochondrial morphology and structure. Mitochondrial dysfunction is related to the occurrence and development of various chronic liver diseases, including hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic fatty liver (AFL), and non-alcoholic fatty liver (NAFL). In this review, we summarize and discuss the role and mechanisms of mitochondrial dysfunction in chronic liver disease, focusing on and discussing some of the latest studies on mitochondria and chronic liver disease.

12.
Cyberpsychol Behav Soc Netw ; 25(8): 540-545, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35877828

RESUMO

Goal contents pursuit reflects the motivational personality and can be an excellent indicator to predict individuals' life satisfaction and daily behaviors. However, due to the expense and subjective bias of questionnaires, it is challenging to obtain individual data and explore the effects of goal contents pursuit in conventional studies. Social media provides individuals with a communication context that can be used as a proxy to infer personality based on a massive of media footprints information. This study obtained 456 Weibo active users' self-reports of goal contents pursuit scale and their online behaviors that is established to train a competent machine learning model, which then successfully identifies the classification of intrinsic and extrinsic goals. From the perspective of Weibo users' features (i.e., basic, interactive, linguistic, and emotional features), the systematic comparison shows the significant differences in the pursuit level of intrinsic and extrinsic goals. This study advances the methodology of employing machine learning and online data to objectively delineate individual goal contents pursuit and paves the way to explore a massive number of individuals' personalities and behaviors.


Assuntos
Mídias Sociais , Emoções , Objetivos , Humanos , Motivação , Inquéritos e Questionários
13.
Front Nutr ; 9: 908175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669078

RESUMO

Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides, which are widely found in Chinese herbs and work as one of the important active ingredients. Its biological activity is attributed to its complex chemical structure with diverse spatial conformations. However, the structural elucidation is the foundation but a bottleneck problem because the majority of CHPs are heteropolysaccharides with more complex structures. Similarly, the studies on the relationship between structure and function of CHPs are even more scarce. Therefore, this review summarizes the structure-activity relationship of CHPs. Meanwhile, we reviewed the structural elucidation strategies and some new progress especially in the advanced structural analysis methods. The characteristics and applicable scopes of various methods are compared to provide reference for selecting the most efficient method and developing new hyphenated techniques. Additionally, the principle structural modification methods of CHPs and their effects on activity are summarized. The shortcomings, potential breakthroughs, and developing directions of the study of CHPs are discussed. We hope to provide a reference for further research and promote the application of CHPs.

14.
Liver Int ; 42(8): 1793-1802, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460172

RESUMO

BACKGROUND & AIMS: The DEAD (Asp-Glu-Ala-Asp)-box helicase family member DDX3x has been proven to involve in hepatic lipid disruption during HCV infection. However, the role of DDX3x in non-alcoholic fatty liver disease (NAFLD), in which lipid homeostasis is severely disrupted, remains unclear. Here, we aimed to illustrate the potential role of DDX3x in NAFLD. METHODS: DDX3x protein levels were evaluated in NAFLD patients and NAFLD models via immunohistochemistry or western blotting. In vivo ubiquitin assay was performed to identify the ubiquitination levels of DDX3x in the progression of steatosis. DDX3x protein levels in mice livers were manipulated by adeno-associated virus-containing DDX3x short hairpin RNA or DDX3x overexpression plasmid. Hepatic or serum triglyceride and total cholesterol were evaluated and hepatic steatosis was confirmed by haematoxylin and eosin staining and oil red o staining. Western blotting was performed to identify the underlying mechanisms of DDX3x involving in the progression of NAFLD. RESULTS: DDX3x protein levels were significantly decreased in NAFLD patients and NAFLD models. DDX3x protein might be degraded via ubiquitin-proteasome system in the progression of steatosis. Knockdown of hepatic DDX3x exacerbated HFD-induced hepatic steatosis in mice, while overexpression of hepatic DDX3x alleviated HFD-induced hepatic steatosis in mice. Further explorative experiments revealed that knockdown of DDX3x could lead to the overactivation of mTORC1 signalling pathway which exacerbates NAFLD. CONCLUSIONS: DDX3x involved in the progression of NAFLD via affecting the mTORC1 signalling pathway. DDX3x might be a potential target for NAFLD treatment.


Assuntos
RNA Helicases DEAD-box , Alvo Mecanístico do Complexo 1 de Rapamicina , Hepatopatia Gordurosa não Alcoólica , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dieta Hiperlipídica , Humanos , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Ubiquitinas
15.
Front Mol Biosci ; 9: 867494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463955

RESUMO

Lung cancer has the highest tumor incidence in China. Lung squamous cell carcinoma (LUSC) is the most common type, accounting for 40-51% of primary lung cancers. LUSC is slow in growth and late in metastasis. Immune-related genes (IRGs) and immune infiltrating cells play a vital role in the clinical outcomes of LUSC. It is important to systematically study its immune gene map to help the prognosis of cancer patients. In this study, we combined the prognostic landscape and expression status of IRGs downloaded from the TCGA and InnatedDB databases and systematically analyzed the prognostic information of LUSC patients to obtain IRGs. After systematically exploring the survival analysis, prognosis-related genes were found, and the PPI network revealed that a total of 11 genes were hub genes. A two-gene prognosis risk model was established by multivariate Cox analysis. Two IRGs were closely correlated with the prognosis of LUSC. Based on these two genes, a new independent prognostic risk model was established, and this model was further verified in the GEO database. Moreover, the risk score of the model was correlated with sex, survival status, and lymphatic metastasis in LUSC patients, and the predictive risk of the prognostic risk model was significantly positively correlated with five kinds of immune cells (CD4 T cells, CD8 T cells, neutrophils, macrophages, and dendritic cells). This study comprehensively analyzed immunogenomics and presented immune-related prognostic biomarkers for LUSC.

16.
Inflamm Bowel Dis ; 28(6): 923-935, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35020883

RESUMO

BACKGROUND: Intestinal fibrosis is a common complication of Crohn's disease (CD) and is characterized by the excessive accumulation of extracellular matrix produced by activated myofibroblasts. Caveolin-1 (CAV1) inhibits fibrosis. However, limited data show that CAV1 affects intestinal fibrosis. METHODS: Human CD tissue samples were gained from patients with CD who underwent surgical resection of the intestine and were defined as stenotic or nonstenotic areas. A dextran sodium sulfate-induced mouse model of intestinal fibrosis was established. For in vitro experiments, we purchased CCD-18Co intestinal fibrosis cells and isolated and cultured human primary colonic fibroblasts. These fibroblasts were activated by transforming growth factor ß administration for 48 hours. In the functional experiments, a specific small interfering RNA or overexpression plasmid was transfected into fibroblasts. The messenger RNA levels of fibrosis markers, such as α-smooth muscle actin, fibronectin, connective tissue growth factor, and collagen I1α, were determined using quantitative polymerase chain reaction. Western blot analysis was applied to detect the expression of CAV1, SQSTM1/p62 (sequestosome 1), and other fibrosis markers. RESULTS: In human CD samples and the dextran sodium sulfate-induced mouse model of intestinal fibrosis, we observed a downregulation of CAV1 in fibrosis-activated areas. Mechanistically, CAV1 knockdown in both human primary colonic fibroblasts and CCD-18Co cells promoted fibroblast activation, while CAV1 overexpression inhibited fibroblast activation in vitro. We found that SQSTM1/p62 positively correlated with CAV1 expression levels in patients with CD and that it was indirectly modulated by CAV1 expression. Rescue experiments showed that CAV1 decreased primary human intestinal fibroblast activation by inhibiting fibroblast autophagy through the modulation of SQSTM1/p62. CONCLUSIONS: Our data demonstrate that CAV1 deficiency induces fibroblast activation by indirectly regulating SQSTM1/p62 to promote fibroblast autophagy. CAV1 or SQSTM1/p62 may be potential therapeutic targets for intestinal fibrosis.


Intestinal fibrosis is a common complication of Crohn's disease. In human Crohn's disease samples and a mouse model of intestinal fibrosis, we observed a downregulation of caveolin-1 (CAV1) in fibrosis-activated areas. Mechanistically, CAV1 deficiency induces fibroblast activation by indirectly regulating SQSTM1/p62 (sequestosome 1) to promote fibroblast autophagy. CAV1 or SQSTM1/p62 may be potential therapeutic targets for intestinal fibrosis.


Assuntos
Doença de Crohn , Animais , Autofagia/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Doença de Crohn/complicações , Dextranos/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Intestinos , Camundongos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
17.
J Oncol ; 2022: 9273628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069738

RESUMO

Lung squamous cell carcinoma (LUSC) is the most common type of lung cancer accounting for 40% to 51%. Long noncoding RNAs (lncRNAs) have been reported to play a significant role in the invasion, migration, and proliferation of lung cancer tissue cells. However, systematic identification of lncRNA signatures and evaluation of the prognostic value for LUSC are still an urgent problem. In this work, LUSC RNA-seq data were collected from TCGA database, and the limma R package was used to screen differentially expressed lncRNAs (DElncRNAs). In total, 216 DElncRNAs were identified between the LUSC and normal samples. lncRNAs associated with prognosis were calculated using univariate Cox regression analysis. The overall survival (OS) prognostic model containing 10 lncRNAs and the disease-free survival (DFS) prognostic model consisting of 11 lncRNAs were constructed using a machine learning-based algorithm, systematic LASSO-Cox regression analysis. We found that the survival rate of samples in the high-risk group was lower than that in the low-risk group. Results of ROC curves showed that both the OS and DFS risk score had better prognostic effects than the clinical characteristics, including age, stage, gender, and TNM. Two lncRNAs (LINC00519 and FAM83A-AS1) that were commonly identified as prognostic factors in both models could be further investigated for their clinical significance and therapeutic value. In conclusion, we constructed lncRNA prognostic models with considerable prognostic effect for both OS and DFS of LUSC.

18.
Cell Death Discov ; 7(1): 244, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531376

RESUMO

Radiation-induced liver injury (RILI) is a major complication of radiotherapy during treatment for liver cancer and other upper abdominal malignant tumors that has poor pharmacological therapeutic options. A series of pathological changes can be induced by radiation. However, the underlying mechanism of RILI remains unclear. Radiation can induce cell damage via direct energy deposition or reactive free radical generation. Cellular senescence can be observed due to the DNA damage response (DDR) caused by radiation. The senescence-associated secretory phenotype (SASP) secreted from senescent cells can cause chronic inflammation and aggravate liver dysfunction for a long time. Oxidative stress further activates the signaling pathway of the inflammatory response and affects cellular metabolism. miRNAs clearly have differential expression after radiation treatment and take part in RILI development. This review aims to systematically profile the overall mechanism of RILI and the effects of radiation on hepatocyte senescence, laying foundations for the development of new therapies.

19.
Carbohydr Polym ; 273: 118556, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560967

RESUMO

The anti-tumor necrosis factor-α (anti-TNF-α) blocker, has shown great efficacy for the treatment of inflammatory bowel disease (IBD). However, systemic exposure to it can cause considerable safety problems due to reduced suppression of the systemic immune response and loss of response to the production of anti-drug antibodies. Thus, we try to devise a targeted vehicle system for oral administration of anti-TNF-α antibodies for the treatment of IBD. In the present study, we developed an oral Infliximab (IFX) loaded nano-in-microparticles, based on chitosan (CS)/carboxymethyl chitosan (CMC) and alginate (Alg), which could protect IFX from the harsh environment of the gastrointestinal tract and produce targeted drug delivery to the inflamed intestine. In vivo studies demonstrated that the IFX loaded nano-in-micro vehicle can alleviate colitis by ameliorating inflammation and maintaining the intestinal epithelial barrier.


Assuntos
Alginatos/química , Quitosana/análogos & derivados , Doenças Inflamatórias Intestinais/tratamento farmacológico , Infliximab/administração & dosagem , Nanopartículas/química , Administração Oral , Animais , Quitosana/química , Colite/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Células HT29 , Humanos , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Infliximab/química , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibidores do Fator de Necrose Tumoral/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
20.
J Gastroenterol Hepatol ; 36(12): 3438-3447, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34273192

RESUMO

BACKGROUND AND AIMS: Insulin-like growth factor binding protein 1 (IGFBP1) is recently proved to be associated with glucose regulation and insulin resistance. However, little is known about its direct impact on nonalcoholic fatty liver disease (NAFLD). This study aims to investigate the effect and potential mechanism of IGFBP1 in NAFLD. METHODS: We first measured the expression level of IGFBP1 in NAFLD patients, mice, and cells. Then in in vivo study, C57BL/6 mice were fed with a methionine/choline-deficient (MCD) diet for 4 weeks to establish the model of NAFLD. And for the last 2 weeks, the mice were injected intraperitoneally with vehicle or recombinant mouse IGFBP1 0.015 mg/kg/d. The L02 cells were treated with free fatty acids (FFA) or palmitate acids (PA) and recombinant IGFBP1 for 48 h. Integrin-linked kinase (ILK) inhibitor and small interfering RNA were used to explore the potential interactions between IGFBP1 and integrin ß1 (ITGB1). RESULTS: The expression of IGFBP1 was increased in NAFLD patients, mice, and cells. IGFBP1 treatment significantly ameliorated lipid accumulation and hepatic injury in MCD-fed mice. IGFBP1 downregulated hepatic lipogenesis and upregulated lipid ß-oxidation. In addition, IGFBP1 attenuated the nuclear factor-kappa B (NF-κB) and extracellular regulated protein kinases (ERK) signaling pathways. In vitro, we proved that IGFBP1 relieved FFA-induced lipid accumulation via interacting with ITGB1 and alleviated inflammation by inhibiting NF-κB and ERK signaling pathways. CONCLUSIONS: IGFBP1 treatment significantly ameliorated hepatic steatosis by interacting with ITGB1 and suppressed inflammation by inhibiting NF-κB and ERK signaling pathways. Therefore, IGFBP1 might be a potential therapeutic target for NAFLD.


Assuntos
Inflamação , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Inflamação/prevenção & controle , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA