Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Comput Biol Med ; 170: 108016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277923

RESUMO

The ankle joint plays a crucial role in gait, facilitating the articulation of the lower limb, maintaining foot-ground contact, balancing the body, and transmitting the center of gravity. This study aimed to implement long short-term memory (LSTM) networks for predicting ankle joint angles, torques, and contact forces using inertial measurement unit (IMU) sensors. Twenty-five healthy participants were recruited. Two IMU sensors were attached to the foot dorsum and the vertical axis of the distal anteromedial tibia in the right lower limb to record acceleration and angular velocity during running. We proposed a LSTM-MLP (multilayer perceptron) model for training time-series data from IMU sensors and predicting ankle joint biomechanics. The model underwent validation and testing using a custom nested k-fold cross-validation process. The average values of the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) for ankle dorsiflexion joint and moment, subtalar inversion joint and moment, and ankle joint contact forces were 0.89 ± 0.04, 0.75 ± 1.04, and 2.96 ± 4.96 for walking, and 0.87 ± 0.07, 0.88 ± 1.26, and 4.1 ± 7.17 for running, respectively. This study demonstrates that IMU sensors, combined with LSTM neural networks, are invaluable tools for evaluating ankle joint biomechanics in lower limb pathological diagnosis and rehabilitation, offering a cost-effective and versatile alternative to traditional experimental settings.


Assuntos
Articulação do Tornozelo , Marcha , Humanos , Fenômenos Biomecânicos , Caminhada ,
2.
J Biomech ; 162: 111865, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976687

RESUMO

Individuals with chronic ankle instability (CAI) suffer from the resulting sequela of repetitive lateral ankle sprains (LAS), whilst copers appear to cope with initial LAS successfully. Therefore, the aim of this study was to explore the intra-foot biomechanical differences among CAI, copers, and healthy individuals during dynamic tasks. Twenty-two participants per group were included and required to perform cutting and different landing tasks (DL: drop landing; FL: forward jump followed a landing). A five-segment foot model with 8 degrees of freedom was used to explore the intra-foot movement among these three groups. Smaller dorsiflexion angles were found in copers (DL tasks and prelanding task) and CAI (DL and FL task) compared to healthy participants. Copers presented a more eversion position compared to others during these dynamic tasks. During the descending phase of DL task, greater dorsiflexion angles in the metatarsophalangeal joint were found in copers compared to the control group. Joint moment difference was only found in the subtalar joint during the descending phase of FL task, presenting more inversion moments in copers compared to healthy participants. Copers rely on more eversion positioning to prevent over-inversion of the subtalar joint compared to CAI. Further, the foot became more unstable when conducting sport-related movements, suggesting that foot stability seems to be sensitive to the task types. These findings may help in designing and implementing interventions to restore functions of the ankle joint in CAI individuals.


Assuntos
Traumatismos do Tornozelo , Instabilidade Articular , Humanos , Tornozelo , Fenômenos Biomecânicos , Articulação do Tornozelo , , Movimento , Doença Crônica
3.
Artigo em Inglês | MEDLINE | ID: mdl-37817665

RESUMO

Metatarsalgia occurring in individuals with pes cavus is typically associated with abnormal loading patterns in the forefoot resulting from structural alterations. Simultaneously, the frequent overstress of the plantar fascia (PF) caused by the persistence of this foot deformity may further exacerbate the chronic pain induced by metatarsal overload. We aimed to investigate and quantify the effects of PF stiffness on the internal biomechanics of pes cavus using a computational modelling approach. A patient-specific finite element model of the foot-ankle complex using the actual three-dimensional geometry of idiopathic pes cavus bones and soft tissues was reconstructed. A sensitivity study was conducted to evaluate the effects of varying elastic modulus (0-700 MPa) of the PF on the metatarsal stress distribution, and force transmission through the metatarsophalangeal (MTP) and tarsometatarsal (TMT) joints in the pes cavus. The results indicated that variations in PF stiffness led to stress redistribution in the metatarsal region. Peak stress gradually reduced with decreasing stiffness until the PF was released, eventually resulting in a reduction of 22.39% compared to the reference value of 350 MPa. Furthermore, adjusting the PF stiffness to twice the reference value (700 MPa) increased the contact forces through the TMT and MTP joints by up to 23% and 116%, respectively. The reduction of PF stiffness alleviated focal metatarsal loading, and therefore, surgical fascia release can be considered to alleviate metatarsalgia in patients with pes cavus.

4.
Gait Posture ; 106: 11-17, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37611480

RESUMO

BACKGROUND: Understanding detailed foot morphology as well as regional plantar forces could provide insight into foot function and provide recommendation for footwear design for chronic ankle instability (CAI) people. RESEARCH QUESTION: This study presented 3-dimensional statistical shape models of feet from three different populations including CAI, copers and healthy individuals, with regional plantar forces also acquired. METHODS: Sixty-six males (22 participants per group) were included in this study to capture 3-dimensional foot shapes under a standing condition and regional plantar forces during a cutting maneuver. Principal component analysis was performed to generate a mean foot shape of each group as well as modes of variations. A generalized procrustes analysis was used to achieve rapid registration of mean shapes. Besides, regional plantar forces and contact duration among these three populations were compared. RESULTS: For 3-dimensional foot shapes, although no significant differences of the average distance between each mode and mean shape were found among three populations, there were subtle variations in mean shapes. The CAI population presented a more bulging of the lateral malleolus; copers were characterized by the flexion of the lesser toes, a more bulging of the medial foot in the sagittal plane; and healthy individuals showed a greater heel width and a more bulging of the heel in the sagittal plane. In terms of plantar forces, healthy individuals had significantly greater summated plantar forces and greater plantar forces in the lateral heel area during the early contact phase compared to copers and CAI participants. SIGNIFICANCE: Overall, this study suggested that repetitive ankle sprains may lead to the bulging of the lateral malleolus. Further, CAI and copers seem to stabilize the ankle joint by medially shifting the center of pressure compared to healthy individuals under the static and less challenging dynamic conditions.

5.
Eur J Pharm Biopharm ; 188: 153-160, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37142130

RESUMO

Phospholipid-valproic acid (DP-VPA)is a prodrug for treating epilepsy. The present study explored the pharmacokinetics (PK) and exposure safety of DP-VPA to provide a basis for future studies exploring the safe dosage and therapeutic strategies for epilepsy. The study included a randomized placebo-controlled dose-escalation tolerance evaluation trial and a randomized triple crossover food-effect trial in healthy Chinese volunteers. A population pharmacokinetic (PopPK) model was established to analyze the PK of DP-VPA and active metabolite VPA. The exposure safety was assessed with the adverse drug reaction (ADR) in CNS. The PopPK of DP-VPA and metabolite VPA fitted a two-compartment model coupling one-compartment with Michaelis-Menten metabolite kinetics and first-order elimination. The absorption processes after single oral administration of DP-VPA tablet demonstrated nonlinear characteristics, including 0-order kinetic phase and time-dependent phase fitting Weibull distribution. The final model indicated that the DP-VPA PK was significantly affected by dosage and food. The exposure-safety relationship demonstrated a generalized linear regression; mild/moderate ADRs occurred in some subjects with 600 mg and all subjects with 1500 mg of DP-VPA, and no severe ADRs were reported up to 2400 mg. In conclusion, the study established a PopPK model describing the processing of DP-VPA and VPA in healthy Chinese subjects. DP-VPA showed good tolerance after a single dose of 600-2400 mg with nonlinear PK and was affected by dosage and food. Based on the association between neurological ADRs and higher exposure to DP-VPA by exposure-safety analysis, 900-1200 mg was recommended for subsequent study of safety and clinical effectiveness.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Epilepsia , Pró-Fármacos , Humanos , Ácido Valproico/farmacocinética , Pró-Fármacos/farmacocinética , População do Leste Asiático , Voluntários Saudáveis
6.
PLoS One ; 18(4): e0284924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099548

RESUMO

OBJECTIVE: Familial focal epilepsy with variable foci (FFEVF) is a rare type of focal epilepsy syndrome; it is associated with NPRL3 variant. However, relevant reports are rare in China. We aimed to analyze the clinical features of Chinese patients with FFEVF to understand further the differences between various NPRL3 variants and explored the effect of NPRL3 variant on mRNA. METHODS: We ran a full workup on a family with FFEVF (four patients, one healthy member): an inquiry of medical history, cranial magnetic resonance imaging (MRI), electroencephalogram (EEG), and whole exon sequencing. Their clinical features were compared with those of other FFEVF patients in published reports. The mRNA splicing changes were analyzed quantitatively and qualitatively using real-time quantitative-polymerase chain reaction (q-PCR) and reverse transcription (RT)-PCR and compared between our patients and healthy individuals. RESULTS: Patients with NPRL3: c.1137dupT variant had a wide range of onset age (4 months to 31 years), diverse seizure types, variable foci (frontal lobe/temporal lobe), different seizure times (day/night) and frequencies (monthly/seldom/every day), different therapeutic effects (refractory epilepsy/almost seizure free), normal MRI, and abnormal EEG (epileptiform discharge, slow wave). The phenotypic spectrum with different NPRL3 variants was either similar or different. Significantly different relative quantities of mRNA were found between patients and healthy individuals in real-time qPCR. Abnormal splicing was observed in patients compared with healthy individual in RT-PCR. Despite having the same gene variant, different family members had different mRNA splicing, possibly causing different phenotypes. CONCLUSION: The clinical features of FFEVF varied, and auxiliary inspection was atypical. NPRL3: c.1137dupT could change the relative quantity of mRNA and cause abnormal splicing, which might produce different phenotypes in different family members.


Assuntos
Epilepsias Parciais , Síndromes Epilépticas , Humanos , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Eletroencefalografia , RNA Mensageiro/genética
7.
Adv Ther ; 40(4): 1628-1643, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790683

RESUMO

INTRODUCTION: Mirogabalin is a treatment option for patients with neuropathic pain; however, safety, tolerability, and pharmacokinetics (PK) data specifically for Chinese individuals are limited to a single-dose study. We aimed to assess these for both single- and multiple-dose mirogabalin in healthy Chinese participants. METHODS: In this randomized, double-blind, placebo-controlled, phase I study, 54 healthy Chinese men and women aged 18-45 years were randomly allocated to receive single- (5, 10, or 15 mg, daily) or multiple-dose (5 mg titrated to 15 mg, twice-daily, over 22 days) oral mirogabalin or placebo. In each of three single-dose groups, 10 participants received mirogabalin and 2 received placebo; in the multiple-dose group, 14 participants received mirogabalin and 4 received placebo. The primary endpoints were PK, safety, and tolerability variables, including treatment-emergent adverse events (TEAEs), laboratory tests, and vital signs. PK data were collected for both single- and multiple-dose cohorts and evaluated by non-compartmental analysis. RESULTS: Single- and multiple-dose mirogabalin was generally well tolerated with no deaths, serious TEAEs, or TEAEs leading to treatment discontinuation. Frequently reported TEAEs included dizziness, nystagmus, increased blood triglycerides, headache, and increased blood uric acid and creatine phosphokinase. Single-dose mirogabalin was rapidly absorbed (median time to maximum plasma concentration, 1.00 h) and eliminated (mean terminal elimination half-life, 2.57-3.08 h). The exposure was approximately dose-proportional. In the multiple-dose cohort, the trough plasma concentration increased dose-proportionally, and exposure and clearance were comparable to that following a single 15-mg dose. The mean cumulative amount excreted into urine up to 48 h post-dose increased in a dose-proportional manner, the mean cumulative percentage excreted into urine was 61.9%-74.3%, and renal clearance remained relatively constant. CONCLUSION: Consistent with previous phase I studies in other populations, mirogabalin was safe and well tolerated in healthy Chinese participants at single and multiple doses of up to 15 mg twice-daily.


Assuntos
Compostos Bicíclicos com Pontes , População do Leste Asiático , Neuralgia , Feminino , Humanos , Masculino , Área Sob a Curva , Compostos Bicíclicos com Pontes/efeitos adversos , Compostos Bicíclicos com Pontes/farmacocinética , Relação Dose-Resposta a Droga , Método Duplo-Cego , Voluntários Saudáveis , Neuralgia/tratamento farmacológico
8.
Heliyon ; 8(11): e11517, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36406689

RESUMO

This study presents a database of joint angles, moments, and forces of the lower extremity from distance running at a submaximal speed in recreational runners. Twenty recreational runners participated in two experimental sessions, specifically pre and post a 5k treadmill run, with a synchronous collection of markers trajectories and ground reaction forces for both limbs in walking and running trials. The raw data in C3D files could be used for musculoskeletal modelling. Extra datasets of joint angles, moments, and forces are presented ready-for-use in MAT files, which could be as reference for study of biomechanical alterations from distance running. Applying advanced data processing techniques (Machine Learning algorithms) to these datasets ( C3D & MAT ), such as Principal Component Analysis, could extract key features of variation, thus potentially being applied for correlation with accelerometric and gyroscope parameters from wearable sensors during field running. Dataset of multi-segmental foot could be another contribution for the investigation of foot complex biomechanics from distance running. The dataset from Asian males may also be used for population-based studies of running biomechanics.

9.
Bioengineering (Basel) ; 9(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421104

RESUMO

This study compares foot-ankle temporal kinematics characteristics during planned and unplanned gait termination (PGT and UGT) in subjects with different arch stiffnesses (ASs) based on the statistical nonparametric mapping (SnPM) method. By measuring three-dimensional arch morphological parameters under different loading conditions, 28 healthy male subjects were classified and participated in gait termination (GT) tests to collect metatarsophalangeal (MTP) and ankle-joint kinematics data. The two-way repeated-measures ANOVA using SnPM was employed to assess the impacts of AS on foot-ankle kinematics during PGT and UGT. Our results show that joint angles (MTP and ankle joints) were altered owing to AS and GT factors. The flexible arches hahadve periods of significantly greater MTP and ankle joint angles than those of stiff arches during the stance phase of GT, whereas subjects exhibited significantly smaller ankle and MTP joint angles during UGT. These results add additional insights into the morphological arch biomechanical function, and the comprehensive compensatory adjustment of lower-limb joints during gait stopping caused by unplanned stimulation.

10.
Children (Basel) ; 9(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35327751

RESUMO

Sensory processing disorder (SPD) could influence the neuromuscular response and adjustment to external sensory discrimination and lead to disruptions in daily locomotion. The objective of the current study was to compare plantar loadings and foot balance during walking, running and turning activities in SPD children in order to reveal the behavioral strategy of movement and balance control. Six SPD children and six age-match healthy controls participated in the test using a FootScan plantar pressure plate. The time-varying parameters of forces, center of pressure and foot balance index were analyzed using an open-source one-dimensional Statistical Parametric Mapping (SPM1d) package. No difference was found in foot balance and plantar loadings during walking, while limited supination-pronation motion was observed in the SPD children during running and turning. The plantar forces were mainly located in the midfoot region while less toe activity was found as well. Findings should be noted that SPD children had limited supination-pronation movement for shock attenuation in the foot complex and reduced ankle pronation to assist push-off and toe gripping movements. Understanding the behavior of plantar loading strategy and balance control during walking, running and turning activities may provide clinical implications for the rehabilitation and training of daily tasks.

11.
Children (Basel) ; 9(3)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35327778

RESUMO

Independent ambulation is one of the most important motor skills in typically developing toddlers. Gait analysis is a key evaluation method in basic and clinical research. A narrative review on the literature of toddler gait development was conducted following inclusion criteria, explicitly including the factors of English article, age range, no external intervention during the experimental process of studies involved, the non-symptomatic toddler, and no pathological gait. Studies about toddlers' morphological, physiological, and biomechanical aspects at this developmental stage were identified. Remarkable gait characteristics and specific development rules of toddlers at different ages were reported. Changes in gait biomechanics are age and walking experience-dependent. Gait patterns are related to the maturation of the neuro and musculoskeletal systems. This review thus provides critical and theoretical information and the nature of toddler walking development for clinicians and other scientific researchers. Future studies may systematically recruit subjects with more explicit criteria with larger samples for longitudinal studies. A particular design could be conducted to analyze empirically before practical application. Additionally, the influence of external interventions on the development of toddler gait may need consideration for gait development in the toddler cohort.

12.
ACS Biomater Sci Eng ; 8(2): 512-525, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34989230

RESUMO

Angiogenesis plays a key role in cancer progression, including transition to the metastatic phase via reactive oxygen species (ROS)-dependent pathways, among others. Antivascular endothelial growth factor (VEGF) antibodies have been trialed as an anti-angiogenic therapy for cancer but are associated with high cost, limited efficacy, and side effects. Cerium oxide nanoparticles (nanoceria) are promising nanomaterials for biomedical applications due to their ability to modulate intracellular ROS. Nanoceria can be produced by a range of synthesis methods, with chemical precipitation as the most widely explored. It has been reported that chemical precipitation can fine-tune primary particle size where a limited number of synthesis parameters were varied. Here, we explore the effect of temperature, precipitating agent concentration and rate of addition, stirring rate, and surfactant concentration on nanoceria primary particle size using a fractional factorial experimental design approach. We establish a robust synthesis method for faceted nanoceria with primary particle diameters of 5-6 nm. The nanoceria are not cytotoxic to a human melanoma cell line (Mel1007) at doses up to 400 µg/mL and are dose-dependently internalized by the cells. The intracellular ROS level for some cells that internalized the nanoceria is reduced, which correlates with a dose-dependent reduction in angiogenic gene expression including VEGF. These findings contribute to our knowledge of the anti-angiogenic effects of nanoceria and help to develop our understanding of potentially new anti-angiogenic agents for combination cancer therapies.


Assuntos
Cério , Melanoma , Nanopartículas , Cério/farmacologia , Humanos , Melanoma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
13.
Acta Bioeng Biomech ; 24(4): 21-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37341060

RESUMO

PURPOSE: Foot pronation is not an isolated factor influencing lower limb functions. Exploring gait variability and impact loading associated with the foot posture are crucial for understanding foot pronation-related injury mechanisms. This study aimed to evaluate how foot posture affects impact loading and running variability during running. METHODS: Twenty-five male participants were recruited into this study. Pressure under the foot arch, acceleration and marker trajectory were recorded in the right limb for each runner after 1, 4, 7 and 10 km running, respectively. Linear mixed effects models were used to analyze the statistical difference of the data. RESULTS: FPI-6 has significantly increased after the 10 km running (p〈0.01). For the tibial acceleration, peak resultant acceleration after 10 km running was significantly increased than after 4 km running (p=0.02). At the dorsum of the foot, the short-time largest Lyapunov exponent (LyE) after 10 km running decreased 0.28 bit/s compared with LyE after 7 km running ( p = 0.03). In the tibia, LyE after 4 km and 10 km running was decreased significantly ( p 〈 0.01 and p = 0.01). CONCLUSIONS: The foot was significantly pronated at the middle and at the end of running. Foot pronation during distance running increased the distal tibia peak impact acceleration but did not increase running instability.


Assuntos
Lixívia , Corrida , Humanos , Masculino , Pronação , Fenômenos Biomecânicos , Extremidade Inferior , Aceleração
14.
Sports Biomech ; 21(4): 531-549, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34412557

RESUMO

An empirical consensus of differences between chronic ankle instability (CAI) individuals and copers (individuals who sprained ankle once and without recurrent symptoms or injury) has not been reported. This study aimed to review the locomotion biomechanics and dynamic postural control between these two populations. Database of ScienceDirect, PubMed and Web of Science was used to search ('chronic ankle instability' OR 'ankle instability') AND ('ankle sprain' OR 'coper*') until 30 November 2020. Articles that made a comparison about changes in biomechanical parameters between Copers and CAI individuals during locomotor or functional tasks were included in this review. Twenty-three articles met the inclusion criteria. CAI individuals exhibited an increased hip flexion to maintain stability, suggesting the adopted hip strategy compared to copers during landing. Dorsiflexion angle and ankle frontal displacement increased considerably compared to copers, which might increase risks of lateral ankle sprain injury. CAI individuals reduced the ankle displacements in the sagittal plane and indicated worse performance of Star Excursion Balance Test in the posterior-lateral direction compared to copers. Identified motion deficits or altered motion strategies provide opportunities for targeted intervention and scheme after index sprain or in CAI individuals.


Assuntos
Tornozelo , Instabilidade Articular , Articulação do Tornozelo , Fenômenos Biomecânicos , Doença Crônica , Humanos , Locomoção , Equilíbrio Postural
15.
Front Hum Neurosci ; 15: 620573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539362

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is fundamental in inducing neuroplastic changes and promoting brain function restoration. Nevertheless, evidence based on the systematic assessment of the implication of rTMS in stroke patients is inadequate. This study aimed to evaluate the value of rTMS in the treatment of lower-limb motor dysfunction in stroke patients via gait characteristics. The electronic literature search was performed in ScienceDirect, Google Scholar, and PubMed databases using "repetitive transcranial magnetic stimulation," "gait," and "stroke" between 2000 and 2020. By screening all the identified studies, a total of 10 studies covering 257 stroke patients were included by matching the inclusion criteria, involving both rTMS with high (≥5 Hz) and low frequency (<5 Hz). Despite the limited study number and relatively high risk of bias, the results of this review primarily confirmed the enhancing effects of rTMS on the lower-limb motor ability (e.g., gait and balance) of stroke patients. In addition, 15- to 20-min course of rTMS for 2 to 3 weeks was found to be the most common setting, and 1 Hz and 10 Hz were the most commonly used low and high frequencies, respectively. These results might have significant clinical applications for patients with weakened lower-limb mobility after a stroke. Nevertheless, more rigorous studies in this field are much warranted. Systematic Review Registration:https://inplasy.com/, identifier INPLASY202180079.

16.
Front Bioeng Biotechnol ; 9: 821530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155415

RESUMO

With the increased popularity of running, many studies have been conducted into footwears that are highly related to running performance and running-related injuries. Previous studies investigated different shoe types and running shoes with different heel-to-toe drops (HTDs). However, no research was found in investigating shoes with negative values with HTD. Therefore, the aim of this study was to determine the acute effect of HTD and running speed on lower limb biomechanics and strike pattern in recreational runners. Thirteen male recreational runners wearing shoes with two different HTDs (-8 and 8 mm) performed running at three different speeds (preferred speed [PS], 90% of PS, 110% of PS). Lower extremity kinematics and ground reaction forces were synchronously captured via Vicon motion analysis system and AMTI force platform. Strike index (SI), vertical average loading rate (VALR), vertical instantaneous loading rate (VILR), excursion, eversion duration, joint angles, and range of motion (ROM) of metatarsophalangeal (MTP), ankle, knee, and hip joints were calculated. Joint angles during the entire stance phase were analyzed applying the statistical nonparametric mapping (SnPM) method. SI and VILR in shoes with -8 mm HTD significantly increased by 18.99% and 31.836 BW/s compared to those with 8 mm HTD (SI: p = 0.002; VILR: p < 0.001). Significant alterations of ROM occurred in the MTP, ankle, and knee joints (p < 0.05), and HTD factor primarily accounted for these changes. Joint angles (MTP, knee, and hip) during the entire stance phase altered due to HTD and speed factors. Running speed primarily influenced the kinematics parameters of knee and hip joints, increasing knee angles in the frontal plane and hip angle in the horizontal plane at PS (p > 0.05). Compared to shoes with 8 mm HTD, shoes with -8 mm HTD may be useful to storage and return energy because of the increased ROM of MTP in the sagittal plane. Besides, forefoot strike gait retraining was recommended before transition from normal running shoes to running shoes with -8 mm HTD.

17.
Technol Health Care ; 29(2): 231-242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32568135

RESUMO

BACKGROUND: Running-induced fatigue has received much attention in recent years. However, very few studies have investigated the effect of fatigue on lower limb biomechanics in three planes. OBJECTIVE: This study was designed to investigate biomechanical changes in the lower limb in three planes following running-induced fatigue. METHODS: Fifteen male novice runners were included in the study and performed three running trails pre- and post-fatigue. Wilcoxon signed-rank tests or paired-sample t tests were used to analyze the data. RESULTS: Lower limb biomechanics significantly changed, especially kinetic parameters, when fatigue occurred. The peak ankle dorsiflexion angle and range of motion of the knee joint in the frontal plane increased. As for kinetic parameters, in the ankle joint, the peak external rotation moment, peak abduction power and peak internal rotation power increased. In the knee joint, the peak abduction and external rotation moment, peak flexion power, peak adduction and abduction power also increased. In the hip joint, the peak flexion moment was decreased, peak adduction and abduction moment, peak external rotation power, peak adduction and abduction power moment were increased. CONCLUSION: The findings of this study may contribute to our understanding of the impact of fatigue and provide some helpful information to prevent related injuries.


Assuntos
Corrida , Fenômenos Biomecânicos , Fadiga , Articulação do Quadril , Humanos , Articulação do Joelho , Extremidade Inferior , Masculino , Amplitude de Movimento Articular
18.
Appl Bionics Biomech ; 2020: 8829036, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381226

RESUMO

Standing long jump (SLJ) is complicated by the challenge of motor coordination in both the upper and lower segments. This movement is also considered to be a fundamental skill in a variety of sports. In particular, SLJ is an important test index for middle school students for assessing their physical fitness levels. This assessment takes the form of a physical fitness test high school entrance examination in some countries such as China. This minireview summarizes recent studies that have investigated how to improve the standing long jump performance from different aspects which include arm motion, takeoff angle, standing posture, warming-up exercise, and handheld weight. The common study limitations, controversial knowledge, and future research direction are also discussed in detail.

19.
Appl Bionics Biomech ; 2020: 7610789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565888

RESUMO

The purpose of this study was to investigate the variations of arch index from static standing to dynamic walking and running; furthermore, the interlimb symmetry was checked in the two populations. A total of eighty male participants were recruited for this study, with forty habitually barefoot and forty habitually shod males, respectively. Arch index (AI) was calculated following the previously established "gold standard" measurement via contact areas recorded from EMED. Repeated measure analysis of variance (ANOVA) was employed to compare the difference between static and dynamic walking and running arch index. Paired-samples t-test and symmetry index (SI) were used to investigate the symmetry of the left foot arch index and right foot arch index. It was found that the dynamic arch index was significantly higher than the static arch index in barefoot and shod males, showing an increase from static weight-bearing standing to dynamic walking and running. However, interlimb (right-left) symmetry in the foot arch index was observed in the two populations. Dynamic changes of the arch index may provide implications that need to be considered while designing shoe lasts or insoles. Knowledge of the healthy arch index range reported from this study could also be used as a standard baseline to probe into foot and arch disorders.

20.
Biomech Model Mechanobiol ; 19(4): 1211-1224, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31705337

RESUMO

This study presents population-based multivariate regression models for predicting foot plantar pressure from easily measured foot metrics in both shod and barefoot populations for running and walking tasks. Both shod and barefoot models were trained on 50 participants and predicted plantar pressure from anthropometric measurements using a 'leave-one-out' validation with R2 values of 0.72-0.78 across walking and running in both populations. When the model was blindly tested on 16 new data sets, the model performed just as well with R2 values of 0.76-0.79 across both populations. Walking and running peak plantar pressure were predicted with similar levels of accuracy in both populations. It was revealed that forefoot plantar pressure was more sensitive to the hallux-toe distance in barefoot people with shod participants showing little response to this foot characteristic. Lateral forefoot plantar pressure was sensitive to the arch index in both shod and barefoot participants but only for walking. During running, the arch index was not a useful determinant of lateral forefoot pressure. Hence, habitually barefoot people who adopt minimalist footwear should consider additional support in the medial forefoot and walking footwear should include forefoot support stratified by arch index (foot type), but running footwear is challenging due to the variability in strike patterns.


Assuntos
Pé/anatomia & histologia , Pé/fisiologia , Intervalos de Confiança , Humanos , Análise dos Mínimos Quadrados , Masculino , Pressão , Corrida/fisiologia , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA