Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.565
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 132114, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714279

RESUMO

Mesona chinensis polysaccharide (MCP) has excellent gel-forming characteristic, previous studies showed that MCP could affect the gelling and structural properties of rice starch, but the effect of MCP on rice starch from different types is not clarified. In this study, the effects of MCP on the pasting, rheological, and structural characteristics of glutinous rice starch (GRS), japonica rice starch (JRS), and indica rice starch (IRS) were investigated. The results showed that GRS-MCP has the best viscosity, its peak and final viscosities are higher than JRS-MCP and IRS-MCP. The gel network structure was enhanced by MCP in the order of IRS > JRS > GRS, which was reflected by greater elasticity, higher gel strength and hardness, and less free water in JRS-MCP and IRS-MCP. MCP also enhanced the ordered structure and thermal stability of the three starch gels, which is conducive to their application in the market. These findings provide new theoretical insights to produce rice starch-based foods.

2.
Adv Mater ; : e2403853, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718418

RESUMO

Superhydrophobic materials are attractive for industrial development but plagued by poor mechanical stability. Herein, we have designed and fabricated a superdurable full-life superhydrophobic composite block by embedding near-zero contractive superhydrophobic silica aerogel into a rigid iron-nickel foam structured similarly to a regular dodecahedron. The synergistic protection afforded by these materials ensures superrobust mechanical stability for our composite block, which features a high compressive strength of up to ∼7.4 MPa, and ultralow Taber abrasion of down to ∼0.567 mm after withstanding 50,000 cycles, and highly efficient water harvesting capability of up to ∼3,114.3 mg min-1 cm-2 at a supercooling degree of 40 K. This robust material system provides a novel strategy to design superhydrophobic materials capable of withstanding extreme conditions, including high temperature, humidity, pressure, and abrasion. This article is protected by copyright. All rights reserved.

3.
Sci Total Environ ; : 173084, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735314

RESUMO

Water use efficiency (defined as the ratio of gross primary productivity to plant transpiration, WUET) describes the tradeoff between ecosystem carbon uptake and water loss. However, a comprehensive understanding of the impact of soil and atmospheric moisture deficits on WUET across large regions remains incomplete. Solar-induced chlorophyll fluorescence (SIF) serves as an effective signal for measuring both terrestrial vegetation photosynthesis and transpiration, thereby enabling a rapid response to changes in the physiological status of plants under water stress. The objectives of this study were to: 1) mechanistically calculate WUET using top-of-canopy SIF data and meteorological information by using the revised mechanistic light response model and the Penman-Monteith equation; 2) analyze the effects of atmospheric and soil water deficits on SIF-based WUET by using decoupled soil water content (SWC) and vapor pressure deficit (VPD); 3) evaluate estimated SIF-based WUET against data from 28 eddy covariance (EC) flux sites representing eight different vegetation types. Results indicated that the model performed well in ecosystems with dense canopies, explaining 56 % of the daily variability in EC tower-based WUET. For the years 2019-2020, the global average WUET derived from SIF was 3.49 g C/kg H2O. Notably, this value exceeded 4 g C/kg H2O in tropical rainforest regions near the equator and went beyond 5 g C/kg H2O in the high-latitude regions of the Northern Hemisphere. We found that SIF-based WUET was primarily influenced by VPD rather than SWC in over 90 % of the global vegetated area. The model used in this study increased our ability to mechanistically estimate WUET with SIF at the global scale, thereby highlighting the significance of the global response of SIF-based WUET to water stress, and also enhancing our understanding of the water­carbon cycle in terrestrial ecosystems.

4.
J Clin Nurs ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736145

RESUMO

AIM: To develop a predictive model for high-burnout of nurses. DESIGN: A cross-sectional study. METHODS: This study was conducted using an online survey. Data were collected by the Chinese Maslach Burnout Inventory-General Survey (CMBI-GS) and self-administered questionnaires that included demographic, behavioural, health-related, and occupational variables. Participants were randomly divided into a development set and a validation set. In the development set, multivariate logistic regression analysis was conducted to identify factors associated with high-burnout risk, and a nomogram was constructed based on significant contributing factors. The discrimination, calibration, and clinical practicability of the nomogram were evaluated in both the development and validation sets using receiver operating characteristic (ROC) curve analysis, Hosmer-Lemeshow test, and decision curve analysis, respectively. Data analysis was performed using Stata 16.0 software. RESULTS: A total of 2750 nurses from 23 provinces of mainland China responded, with 1925 participants (70%) in a development set and 825 participants (30%) in a validation set. Workplace violence, shift work, working time per week, depression, stress, self-reported health, and drinking were significant contributors to high-burnout risk and a nomogram was developed using these factors. The ROC curve analysis demonstrated that the area under the curve of the model was 0.808 in the development set and 0.790 in the validation set. The nomogram demonstrated a high net benefit in the clinical decision curve in both sets. CONCLUSION: This study has developed and validated a predictive nomogram for identifying high-burnout in nurses. RELEVANCE TO CLINICAL PRACTICE: The nomogram conducted by our study will assist nursing managers in identifying at-high-risk nurses and understanding related factors, helping them implement interventions early and purposefully. REPORTING METHOD: The study adhered to the relevant EQUATOR reporting guidelines: TRIPOD Checklist for Prediction Model Development and Validation. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.

5.
Food Funct ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738974

RESUMO

Our laboratory previously extracted bound polyphenols (BPP) in insoluble dietary fiber from navel orange peel (NOP-IDF), and the aim of this study was to investigate the anti-inflammatory activity and potential molecular mechanisms of BPP by establishing an LPS-induced intestinal-like Caco-2/RAW264.7 co-culture inflammation model. The results demonstrated that BPP reduced the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the production of pro-inflammatory cytokines, nitric oxide (NO), and reactive oxidative species (ROS) during the inflammatory damage process. Furthermore, BPP alleviated the lipopolysaccharides (LPS)-induced intestinal barrier damage by attenuating the decrease in trans-epithelial electrical resistance (TEER), diamine oxidase (DAO) activity, and intestinal alkaline phosphatase (IAP) activity, as well as the downregulation of ZO-1, Occludin, and Claudin-1 protein expression levels. RNA-seq results on RAW264.7 cells in the co-culture model showed that the NF-κB and JAK-STAT pathways belonged to the most significantly affected signaling pathways in the KEGG analysis, and western blot confirmed that they are essential for the role of BPP in intestinal inflammation. Additionally, overexpression of the granulocyte-macrophage colony-stimulating factor (CSF2) gene triggered abnormal activation of the NF-κB and JAK-STAT pathways and high-level expression of inflammatory factors, while BPP effectively improved this phenomenon. The above results suggested that BPP could inhibit intestinal inflammatory injury and protect intestinal barrier integrity through CSF2-mediated NF-κB and JAK-STAT pathways.

6.
Medicine (Baltimore) ; 103(17): e37911, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669422

RESUMO

Hypertriglyceridemia is a common cause of acute pancreatitis (AP). Fatty liver, a manifestation of metabolic syndrome, is related to the severity of AP. The present study aimed to construct an accurate predictive model for severe AP (SAP) by combining the fatty liver infiltration on a computerized tomography (CT) scan with a series of blood biomarkers in patients with hypertriglyceridemia-associated AP (HTG-AP). A total of 213 patients diagnosed with HTG-AP were included in the present retrospective study. Clinical information and imageological findings were retrospectively analyzed. The model was constructed from independent risk factors using univariate analysis, the least absolute shrinkage and selection operator method. Subsequently, the data from the training group of 111 patients with HTG-AP was analyzed using logistic regression analysis. The efficacy of the model was verified using an external validation group of 102 patients through the receiver operating characteristic curve (ROC). Independent predictors, including serum calcium, C-reactive protein, lactate dehydrogenase and liver-to-spleen CT attenuation ratio (L/S ratio), were incorporated into the nomogram model for SAP in HTG-AP. The model achieved a sensitivity of 91.3% and a specificity of 88.6% in the training group. Compared with the Ranson model, the established nomogram model exhibited a better discriminative ability in the training group [area under the curve (AUC): 0.957] and external validation group (AUC: 0.930), as well as better calibration and clinical benefits. The present study demonstrates that the constructed nomogram based on CT findings and blood biomarkers is useful for the accurate prediction of SAP in HTG-AP.


Assuntos
Biomarcadores , Hipertrigliceridemia , Nomogramas , Pancreatite , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Hipertrigliceridemia/complicações , Hipertrigliceridemia/sangue , Pancreatite/sangue , Pancreatite/diagnóstico por imagem , Pancreatite/complicações , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Biomarcadores/sangue , Adulto , Índice de Gravidade de Doença , Curva ROC , Proteína C-Reativa/análise , Fígado Gorduroso/sangue , Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/complicações , Fatores de Risco , L-Lactato Desidrogenase/sangue , Idoso , Valor Preditivo dos Testes
7.
Artigo em Inglês | MEDLINE | ID: mdl-38622945

RESUMO

Mental health problems in nurses are prevalent and impairing. To date, no literature has comprehensively synthesised cohort evidence on mental health among nurses. This scoping review aimed to synthesise the existing literature on the risk factors and consequences of mental health problems in nurses. A systematic search was conducted on PubMed, EMBASE, Epistemonikos database, Web of Science, CINAHL, and PsycINFO from inception to March 2023. We identified 171 cohort studies from 16 countries, mostly (95.3%) from high-income economies. This review indicated that nurses worldwide encountered significant mental health challenges, including depression, cognitive impairment, anxiety, trauma/post-traumatic stress disorder, burnout, sleep disorder, and other negative mental health problems. These problems were closely related to various modifiable risk factors such as nurses' behaviours and lifestyles, social support, workplace bullying and violence, shift work, job demands, and job resources. Moreover, nurses' mental health problems have negative effects on their physical health, behaviour and lifestyle, occupation and organisation, and intrapersonal factors. These findings provided an enhanced understanding of mental health complexities among nurses, and shed light on policy enactment to alleviate the negative impact of mental health problems on nurses. Addressing mental health among nurses should be a top priority.

8.
ACS Cent Sci ; 10(3): 628-636, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559293

RESUMO

Angelica sinensis, commonly known as Dong Quai in Europe and America and as Dang-gui in China, is a medicinal plant widely utilized for the prevention and treatment of osteoporosis. In this study, we report the discovery of a new category of phthalide from Angelica sinensis, namely falcarinphthalides A and B (1 and 2), which contains two fragments, (3R,8S)-falcarindiol (3) and (Z)-ligustilide (4). Falcarinphthalides A and B (1 and 2) represent two unprecedented carbon skeletons of phthalide in natural products, and their antiosteoporotic activities were evaluated. The structures of 1 and 2, including their absolute configurations, were established using extensive analysis of NMR spectra, chemical derivatization, and ECD/VCD calculations. Based on LC-HR-ESI-MS analysis and DFT calculations, a production mechanism for 1 and 2 involving enzyme-catalyzed Diels-Alder/retro-Diels-Alder reactions was proposed. Falcarinphthalide A (1), the most promising lead compound, exhibits potent in vitro antiosteoporotic activity by inhibiting NF-κB and c-Fos signaling-mediated osteoclastogenesis. Moreover, the bioinspired gram-scale total synthesis of 1, guided by intensive DFT study, has paved the way for further biological investigation. The discovery and gram-scale total synthesis of falcarinphthalide A (1) provide a compelling lead compound and a novel molecular scaffold for treating osteoporosis and other metabolic bone diseases.

9.
Psychol Med ; : 1-11, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563283

RESUMO

BACKGROUND: The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear. METHODS: By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders. RESULTS: SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07­1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06­1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04­1.18, p = 1.84 × 10−3). CONCLUSIONS: We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.

10.
Foods ; 13(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611388

RESUMO

Functional foods have potential health benefits for humans. Lotus seeds (LS) as functional foods have excellent antioxidant activities. However, the differences in chemical composition of different LS cultivars may affect their antioxidant activities. This study comprehensively analyzed the differences among five LS cultivars based on metabolomics and further revealed the effects of metabolites on antioxidant activities by correlation analysis. A total of 125 metabolites were identified in LS using UPLC-Q/TOF-MS. Then, 15 metabolites were screened as differential metabolites of different LS cultivars by chemometrics. The antioxidant activities of LS were evaluated by DPPH•, FRAP, and ABTS•+ assays. The antioxidant activities varied among different LS cultivars, with the cultivar Taikong 66 showing the highest antioxidant activities. The correlation analysis among metabolites and antioxidant activities highlighted the important contribution of phenolics and alkaloids to the antioxidant activities of LS. Particularly, 11 metabolites such as p-coumaric acid showed significant positive correlation with antioxidant activities. Notably, 6 differential metabolites screened in different LS cultivars showed significant effects on antioxidant activities. These results revealed the important effects of phytochemicals on the antioxidant activities of different LS cultivars. This study provided evidence for the health benefits of different LS cultivars.

11.
World J Gastroenterol ; 30(10): 1393-1404, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596499

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, affecting about 1/4th of the global population and causing a huge global economic burden. To date, no drugs have been approved for the treatment of NAFLD, making the correction of unhealthy lifestyles the principle method of treatment. Identifying patients with poor adherence to lifestyle correction and attempting to improve their adherence are therefore very important. AIM: To develop and validate a scale that can rapidly assess the adherence of patients with NAFLD to lifestyle interventions. METHODS: The Exercise and Diet Adherence Scale (EDAS) was designed based on compilation using the Delphi method, and its reliability was subsequently evaluated. Demographic and laboratory indicators were measured, and patients completed the EDAS questionnaire at baseline and after 6 months. The efficacy of the EDAS was evaluated in the initial cohort. Subsequently, the efficacy of the EDAS was internally verified in a validation cohort. RESULTS: The EDAS consisted of 33 items in six dimensions, with a total of 165 points. Total EDAS score correlated significantly with daily number of exercise and daily reduction in calorie intake (P < 0.05 each), but not with overall weight loss. A total score of 116 was excellent in predicting adherence to daily reduction in calorie intake (> 500 kacl/d), (sensitivity/specificity was 100.0%/75.8%), while patients score below 97 could nearly rule out the possibility of daily exercise (sensitivity/specificity was 89.5%/44.4%). Total EDAS scores ≥ 116, 97-115, and < 97 points were indicative of good, average, and poor adherence, respectively, to diet and exercise recommendations. CONCLUSION: The EDAS can reliably assess the adherence of patients with NAFLD to lifestyle interventions and have clinical application in this population.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Reprodutibilidade dos Testes , Estilo de Vida , Dieta , Exercício Físico
12.
Light Sci Appl ; 13(1): 81, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584173

RESUMO

Laser state active controlling is challenging under the influence of inherent loss and other nonlinear effects in ultrafast systems. Seeking an extension of degree of freedom in optical devices based on low-dimensional materials may be a way forward. Herein, the anisotropic quasi-one-dimensional layered material Ta2PdS6 was utilized as a saturable absorber to modulate the nonlinear parameters effectively in an ultrafast system by polarization-dependent absorption. The polarization-sensitive nonlinear optical response facilitates the Ta2PdS6-based mode-lock laser to sustain two types of laser states, i.e., conventional soliton and noise-like pulse. The laser state was switchable in the single fiber laser with a mechanism revealed by numerical simulation. Digital coding was further demonstrated in this platform by employing the laser as a codable light source. This work proposed an approach for ultrafast laser state active controlling with low-dimensional material, which offers a new avenue for constructing tunable on-fiber devices.

13.
Environ Res ; 252(Pt 3): 119016, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677405

RESUMO

Household garbage rooms release abundant bioaerosols and are an important source of pathogens; however, information on the distribution and survival patterns of pathogens in different waste components is limited. In this study, a culture method and 16S rRNA high-throughput sequencing were used to determine bacterial communities, culturable pathogens, and human bacterial pathogens (HBPs). The results showed that abundant culturable bacteria were detected in all waste types, and a large number of S. aureus was detected on the surface of recyclable wastes, whereas S. aureus, total coliforms, Salmonella, Enterococcus, and hemolytic bacteria were detected in food waste and other waste. The activities of these detected pathogenic bacteria decreased after 24 h of storage but re-activated within one week. Factors affecting the emergence of pathogens varied with different waste components. Sequencing results showed that Pseudomonas, Acinetobacter, and Burkholderia were abundant in the waste samples, whereas Achromobacter, Exiguobacteriums, Bordetella, and Corynebacterium were the primary pathogens in the bioaerosol and wall attachment. The results of traceability analysis showed that bioaerosol microbes were mainly derived from raw kitchen waste (5.98%) and plastic and paper contaminated with food waste (19.93%) in garbage rooms. In addition, bioaerosols were the main source of microflora in the wall attachment, which possessed high HBP diversity and required more attention. These findings will help in understanding the microbial hazards in different waste components and provide guidance for the control and risk reduction of bioaerosols during waste management and recycling.

14.
Phys Chem Chem Phys ; 26(18): 13751-13761, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683175

RESUMO

Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.


Assuntos
Simulação de Dinâmica Molecular , Neurotransmissores , Serotonina , Radiação Terahertz , Ácido gama-Aminobutírico , Neurotransmissores/química , Ácido gama-Aminobutírico/química , Serotonina/química , Serotonina/metabolismo , Nicotina/química , Epinefrina/química
15.
Environ Pollut ; 349: 123993, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636838

RESUMO

Landfill is a huge pathogen reservoir and needs special attention. Herein, the distribution and spread risk of pathogen were assessed in excavated landfill scenario. The results show that landfill excavation will greatly increase the risk of environmental microbial contamination. The highest total concentration of culturable bacteria among landfill refuse, topsoil and plant leaves was found to be as high as 1010 CFU g-1. Total coliforms, Hemolytic bacteria, Staphylococcus aureus, Salmonella, Enterococci, and Fecal coliforms were detected in the landfill surrounding environment. Notably, pathogens were more likely to adhere to plant leaves, making it an important source of secondary pathogens. The culturable bacteria concentration in the air samples differed with the landfill zone with different operation status, and the highest culturable bacteria concentration was found in the excavated area of the landfill (3.3 × 104 CFU m-3), which was the main source of bioaerosol release. The distribution of bioaerosols in the downwind outside of the landfill showed a tendency of increasing and then decreasing, and the highest concentration of bioaerosols outside of the landfill (6.56 × 104 CFU m-3) was significantly higher than that in the excavated area of the landfill. The risk of respiratory inhalation was the main pathway leading to infection, whereas the HQin (population inhalation hazardous quotient) at 500 m downwind the excavation landfill was still higher than 1, indicating that the neighboring residents were exposed to airborne microbial pollutants. The results of the study provide evidence for bioaerosols control protective measures taken to reduce health risk from the excavated landfill.


Assuntos
Microbiologia do Ar , Monitoramento Ambiental , Instalações de Eliminação de Resíduos , Bactérias/isolamento & purificação , Eliminação de Resíduos , Aerossóis/análise , Microbiologia do Solo , Medição de Risco
16.
Food Funct ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687276

RESUMO

In this study, it was found that epigallocatechin-3-gallate (EGCG) could extend the lifespan of Caenorhabditis elegans (C. elegans) induced by 100 µM acrolein (ACR) at all test concentrations (300, 400, 500, 600, and 700 µM). Notably, 500 µM EGCG exhibited the most significant mean lifespan extension, increasing it by approximately 32.5%. Furthermore, 500 µM EGCG effectively reduced elevated levels of reactive oxygen species (ROS) and lipofuscin production caused by acrolein. It also bolstered the activity of antioxidant enzymes and mitigated malondialdehyde (MDA) levels compared to the ACR-only group. These effects appeared independent of dietary restrictions. Additionally, qPCR results revealed different changes in the transcription levels of 11 genes associated with antioxidative and anti-aging functions following EGCG treatment. At the expression level, GST-4::GFP, SOD-3::GFP and HSP-16.2::GFP exhibited an initial increase with ACR treatment followed by a decrease with EGCG treatment, while the expression pattern of these three GFPs remained consistent with the enzyme activity and transcription regulation level. EGCG treatment also reduced the nuclear localization of SKN-1 and DAF-16 in the MAPK and IIS pathways that were enhanced by ACR. Moreover, the longevity-promoting effects of EGCG were diminished or absent in 13 longevity gene-deletion mutants. In conclusion, EGCG demonstrates protective effects on ACR-induced C. elegans, with the IIS and MAPK pathways playing a critical role in enhancing resilience to ACR.

17.
Cancer Lett ; 590: 216856, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583651

RESUMO

Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.


Assuntos
Autofagia , Imunoterapia , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Autofagia/imunologia , Autofagia/efeitos dos fármacos , Imunoterapia/métodos , Evasão Tumoral , Animais , Imunidade Adaptativa , Morte Celular/imunologia , Imunidade Inata
18.
Heliyon ; 10(6): e28021, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524547

RESUMO

Vascular calcification (VC) is an accurate risk factor and predictor of adverse cardiovascular events; however, there is currently no effective therapy to specifically prevent VC progression. Capsaicin (Cap) is a bioactive alkaloid isolated from Capsicum annuum L., a traditional medicinal and edible plant that is beneficial for preventing cardiovascular diseases. However, the effect of Cap on VC remains unclear. This study aimed to explore the effects and related mechanisms of Cap on aortic calcification in a mouse and on Pi-induced calcification in vascular smooth muscle cells (VSMCs). First, we established a calcification mouse model with vitamin D3 and evaluated the effects of Cap on calcification mice using von Kossa staining, calcium content, and alkaline phosphatase activity tests. The results showed that Cap significantly improved calcification in mice. VSMCs were then cultured in 2.6 mM Na2HPO4 and 50 µg/mL ascorbic acid for 7 days to obtain a calcification model, and we investigated the effects and mechanisms of Cap on VSMCs calcification by assessing the changes of calcium deposition, calcium content, and subsequent VC biomarkers. These results showed that Cap alleviated VSMCs calcification by upregulating the expressions of TRPV1. Moreover, Cap reduced the expression of Wnt3a and ß-catenin, whereas DKK1 antagonised the inhibitory effect of Cap on VSMC calcification. This study is the first to offer direct evidence that Cap inhibits the Wnt/ß-catenin signaling pathway by upregulating the expression of the TRPV1 receptor, resulting in the decreased expression of Runx2 and BMP-2, thereby reducing VSMC calcification. Our study may provide novel strategies for preventing the progression of VC. This could serve as a theoretical basis for clinically treating VC with spicy foods.

19.
Food Res Int ; 182: 114113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519168

RESUMO

Soy sauce is a traditional seasoning in Asia and provides a unique flavor to food. However, some harmful Maillard reaction products (MRPs) were inevitably formed during the manufacturing process. Fermentation is a critical step of soy sauce manufacturing and has a significant impact on MRPs formation. Therefore, this study investigated the formation of some characteristic MRPs (e.g., furan, carboxymethyl lysine (CML), 5-hydroxymethylfurfural (5-HMF), α-dicarbonyl compounds) and their correlation with major quality indicators (e.g., free amino acids, reducing sugar, total acid, ammonia nitrogen, total nitrogen, non-salt soluble solids) in low-salt solid-state fermentation soy sauce (LSFSS). The result showed that the levels of furan, CML, and 5-HMF continue to increase during the fermentation process, reaching a maximum after sterilization. Further testing using Person correlation showed that the formation of furan, CML, and 5-HMF in LSFSS was positively correlated with glucose, fructose, α-dicarbonyl compounds, and most of the amino acids, while it was negatively correlated with sucrose and methionine. Among them, the contribution of lysine, valine, isoleucine, leucine, and arginine to furan formation has rarely been reported. Our results provide a good theoretical basis for the control of MRPs during LSFSS fermentation.


Assuntos
Alimentos de Soja , Humanos , Fermentação , Lisina , Cloreto de Sódio na Dieta , Cloreto de Sódio , Furanos , Nitrogênio
20.
Food Chem Toxicol ; 186: 114582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460668

RESUMO

Mycotoxins and thermal processing hazards are common contaminants in various foods and cause severe problems in terms of food safety and health. Combined use of acrylamide (AA) and ochratoxin A (OTA) would result in more significant intestinal toxicity than either toxin alone, but the underlying mechanisms behind this poor outcome remain unclear. Herein, we established the co-culture system of Caco-2/HT29-MTX cells for simulating a real intestinal environment that is more sensitive to AA and OTA, and showed that the combination of AA and OTA could up-regulate permeability of the intestine via increasing LY permeabilization, and decreasing TEER, then induce oxidative stress imbalance (GSH, SOD, MDA, and ROS) and inflammatory system disorder (TNF-α, IL-1ß, IL-10, and IL-6), thereby leading a rapid decline in cell viability. Western blot, PAS- and AB-staining revealed that AA and OTA showed a synergistic effect on the intestine mainly through the disruption of tight junctions (TJs) and a mucus layer. Furthermore, based on correlation analysis, oxidative stress was more relevant to the mucus layer and TJs. Therefore, our findings provide a better evaluation model and a potential mechanism for further determining or preventing the combined toxicity caused by AA and OTA.


Assuntos
Acrilamidas , Mucosa Intestinal , Ocratoxinas , Humanos , Células CACO-2 , Técnicas de Cocultura , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA