RESUMO
The establishment of the small intestinal (SI) lineage during human embryogenesis ensures functional integrity of the intestine after birth. The chromatin dynamics that drive SI lineage formation and regional patterning in humans are essentially unknown. To fill this knowledge void, we apply a cutting-edge genomic technology to a state-of-the-art human model of early SI development. Specifically, we leverage chromatin run-on sequencing (ChRO-seq) to define the landscape of active promoters, enhancers and gene bodies across distinct stages of directed differentiation of human pluripotent stem cells into SI spheroids with regional specification. Through comprehensive ChRO-seq analysis we identify candidate stage-specific chromatin activity states, novel markers and enhancer hotspots during the directed differentiation. Moreover, we propose a detailed transcriptional network associated with SI lineage formation or regional patterning. Our ChRO-seq analyses uncover a previously undescribed pattern of enhancer activity and transcription at HOX gene loci underlying SI regional patterning. We also validated this unique HOX dynamics by the analysis of single cell RNA-seq data from human fetal SI. Overall, the results lead to a new proposed working model for the regulatory underpinnings of human SI development, thereby adding a novel dimension to the literature that has relied almost exclusively on non-human models.
Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Intestino Delgado/embriologia , Modelos Biológicos , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Elementos Facilitadores Genéticos , Genes Homeobox , Células-Tronco Embrionárias Humanas/citologia , Humanos , Intestino Delgado/metabolismo , Camundongos , Organoides , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única , Transcrição GênicaRESUMO
The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34+ cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34+ cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34+ hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17+ vessels from which RUNX1C+ blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34+ hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs.
Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Neovascularização Fisiológica/fisiologia , Aorta/citologia , Aorta/embriologia , Aorta/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Gônadas/citologia , Gônadas/embriologia , Gônadas/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Humanos , Mesonefro/crescimento & desenvolvimentoRESUMO
We investigated the role of canonical WNT signaling in mesoderm and hematopoietic development from human embryonic stem cells (hESCs) using a recombinant human protein-based differentiation medium (APEL). In contrast to prior studies using less defined culture conditions, we found that WNT3A alone was a poor inducer of mesoderm. However, WNT3A synergized with BMP4 to accelerate mesoderm formation, increase embryoid body size, and increase the number of hematopoietic blast colonies. Interestingly, inclusion of WNT3A or a GSK3 inhibitor in methylcellulose colony-forming assays at 4 days of differentiation abrogated blast colony formation but supported the generation of mesospheres that expressed genes associated with mesenchymal lineages. Mesospheres differentiated into cells with characteristics of bone, fat, and smooth muscle. These studies identify distinct effects for WNT3A, supporting the formation of hematopoietic or mesenchymal lineages from human embryonic stem cells, depending upon differentiation stage at the time of exposure.
Assuntos
Corpos Embrioides/citologia , Hematopoese , Células-Tronco Mesenquimais/citologia , Proteína Wnt3A/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Linhagem da Célula , Células Cultivadas , Corpos Embrioides/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Via de Sinalização Wnt , Proteína Wnt3A/antagonistas & inibidores , Proteína Wnt3A/genéticaRESUMO
The limited availability of human vascular endothelial cells (ECs) hampers research into EC function whilst the lack of precisely defined culture conditions for this cell type presents problems for addressing basic questions surrounding EC physiology. We aimed to generate endothelial progenitors from human pluripotent stem cells to facilitate the study of human EC physiology, using a defined serum-free protocol. Human embryonic stem cells (hESC-ECs) differentiated under serum-free conditions generated CD34(+)KDR(+) endothelial progenitor cells after 6days that could be further expanded in the presence of vascular endothelial growth factor (VEGF). The resultant EC population expressed CD31 and TIE2/TEK, took up acetylated low-density lipoprotein (LDL) and up-regulated expression of ICAM-1, PAI-1 and ET-1 following treatment with TNFα. Immunofluorescence studies indicated that a key mediator of vascular tone, endothelial nitric oxide synthase (eNOS), was localised to a perinuclear compartment of hESC-ECs, in contrast with the pan-cellular distribution of this enzyme within human umbilical vein ECs (HUVECs). Further investigation revealed that that the serum-associated lipids, lysophosphatidic acid (LPA) and platelet activating factor (PAF), were the key molecules that affected eNOS localisation in hESC-ECs cultures. These studies illustrate the feasibility of EC generation from hESCs and the utility of these cells for investigating environmental cues that impact on EC phenotype. We have demonstrated a hitherto unrecognized role for LPA and PAF in the regulation of eNOS subcellular localization.
Assuntos
Meios de Cultura/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células Endoteliais/citologia , Lisofosfolipídeos/farmacologia , Óxido Nítrico Sintase Tipo III/análise , Fator de Ativação de Plaquetas/farmacologia , Antígenos CD34/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colágeno/química , Combinação de Medicamentos , Células-Tronco Embrionárias/citologia , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Laminina/química , Óxido Nítrico Sintase Tipo III/metabolismo , Proteoglicanas/química , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein-coupled APELIN receptor (APLNR). APLNR-positive cells, identified by binding of the fluoresceinated peptide ligand, APELIN (APLN), or an anti-APLNR mAb, were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs), increased the expression of hematoendothelial genes in differentiating hESCs, and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore, APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Apelina , Receptores de Apelina , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Endoderma/efeitos dos fármacos , Endoderma/metabolismo , Endoderma/fisiologia , Perfilação da Expressão Gênica , Hemangioblastos/efeitos dos fármacos , Hemangioblastos/metabolismo , Hemangioblastos/fisiologia , Hematopoese/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Mesoderma/fisiologia , Análise em Microsséries , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genéticaRESUMO
NKX2-5 is expressed in the heart throughout life. We targeted eGFP sequences to the NKX2-5 locus of human embryonic stem cells (hESCs); NKX2-5(eGFP/w) hESCs facilitate quantification of cardiac differentiation, purification of hESC-derived committed cardiac progenitor cells (hESC-CPCs) and cardiomyocytes (hESC-CMs) and the standardization of differentiation protocols. We used NKX2-5 eGFP(+) cells to identify VCAM1 and SIRPA as cell-surface markers expressed in cardiac lineages.
Assuntos
Separação Celular/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Mioblastos Cardíacos/citologia , Miócitos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Biomarcadores/análise , Diferenciação Celular , Perfilação da Expressão Gênica , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Humanos , Mioblastos Cardíacos/metabolismo , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Fatores de Transcrição/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
We have used homologous recombination in human embryonic stem cells (hESCs) to insert sequences encoding green fluorescent protein (GFP) into the NKX2.1 locus, a gene required for normal development of the basal forebrain. Generation of NKX2.1-GFP(+) cells was dependent on the concentration, timing, and duration of retinoic acid treatment during differentiation. NKX2.1-GFP(+) progenitors expressed genes characteristic of the basal forebrain, including SHH, DLX1, LHX6, and OLIG2. Time course analysis revealed that NKX2.1-GFP(+) cells could upregulate FOXG1 expression, implying the existence of a novel pathway for the generation of telencephalic neural derivatives. Further maturation of NKX2.1-GFP(+) cells gave rise to γ-aminobutyric acid-, tyrosine hydroxylase-, and somatostatin-expressing neurons as well as to platelet-derived growth factor receptor α-positive oligodendrocyte precursors. These studies highlight the diversity of cell types that can be generated from human NKX2.1(+) progenitors and demonstrate the utility of NKX2.1(GFP/w) hESCs for investigating human forebrain development and neuronal differentiation.
Assuntos
Linhagem da Célula/genética , Rastreamento de Células/métodos , Células-Tronco Embrionárias/metabolismo , Proteínas Nucleares/genética , Prosencéfalo/embriologia , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Citometria de Fluxo/métodos , Genes Reporter , Humanos , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular/métodos , Neurogênese/genética , Neurogênese/fisiologia , Proteínas Nucleares/metabolismo , Prosencéfalo/citologia , Prosencéfalo/fisiologia , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismoRESUMO
Human ESCs (hESCs) are a valuable tool for the study of early human development and represent a source of normal differentiated cells for pharmaceutical and biotechnology applications and ultimately for cell replacement therapies. For all applications, it will be necessary to develop assays to validate the efficacy of hESC differentiation. We explored the capacity for FTIR spectroscopy, a technique that rapidly characterises cellular macromolecular composition, to discriminate mesendoderm or ectoderm committed cells from undifferentiated hESCs. Distinct infrared spectroscopic "signatures" readily distinguished hESCs from these early differentiated progeny, with bioinformatic models able to correctly classify over 97% of spectra. These data identify a role for FTIR spectroscopy as a new modality to complement conventional analyses of hESCs and their derivatives. FTIR spectroscopy has the potential to provide low-cost, automatable measurements for the quality control of stem and differentiated cells to be used in industry and regenerative medicine.