Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Vaccine ; 41(40): 5884-5891, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598026

RESUMO

Marek's disease (MD) is a highly contagious viral neoplastic disease of chickens caused by Marek's disease virus (MDV), resulting in significant economic losses to the poultry industry worldwide. The commonly used live and/or vectored MDV vaccines are expensive to produce and difficult to handle due to the requirement of liquid nitrogen for manufacturing and delivering frozen infected cells that are viable. In this study, we aimed to develop a Newcastle disease virus (NDV) vectored MDV vaccine that can be lyophilized, stored, and transported at 4 °C. Four NDV LaSota (LS) vaccine strain-based recombinant viruses expressing MDV glycoproteins gB, gC, gE, or gI were generated using reverse genetics technology. The biological assessments showed that these recombinant viruses were slightly attenuated in vivo yet retained similar growth kinetics and virus titers in vitro compared to the parental LaSota virus. Vaccination of leghorn chickens (Lines 15I5x71 F1 cross) with these recombinant viruses via intranasal and intraocular routes conferred different levels of protection against virulent MDV challenge. The recombinant expressing the MDV gB protein, rLS/MDV-gB, protected vaccinated birds significantly against MDV-induced tumor formation when challenged at 14 days post-vaccination (DPV) but moderately at 5 DPV. Whereas the other three recombinants provided little protection against the MDV challenge. All four recombinants conferred complete protection against the velogenic NDV challenge. These results demonstrated that the rLS/MDV-gB virus is a safe and efficacious dual vaccine candidate that can be lyophilized and potentially mass-administered via aerosol or drinking water to large chicken populations at a meager cost.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas , Vírus da Doença de Newcastle/genética , Doença de Marek/prevenção & controle , Herpesvirus Galináceo 2/genética , Comércio
3.
Front Vet Sci ; 10: 1178801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303720

RESUMO

The reverse genetics system of the Newcastle disease virus (NDV) has provided investigators with a powerful approach to understand viral molecular biology and vaccine development. It has been impressively improved with modified strategies since its first report, but it still poses some challenges. Most noteworthy, the genome complexity and length made full-length error-free cDNA assembly the most challenging and time-consuming step of NDV rescue. In the present study, we report a rapid full-length NDV genome construction with only a two-step ligation-independent cloning (LIC) strategy, which could be applied to distinct genotypes. In this approach, the genome of NDV was divided into two segments, and the cDNA clones were generated by RT-PCR followed by LIC. Subsequently, the infectious NDVs were rescued by co-transfection of the full-length cDNA clones and supporting plasmids expressing the NP, P, and L proteins of NDV in BHK-21 cells. Compared with the conventional cloning approaches, the two-step cloning method drastically reduced the number of cloning steps and saved researchers a substantial amount of time for constructing NDV infectious clones, thus enabling a rapid rescue of different genotypes of NDVs in a matter of weeks. Therefore, this two-step LIC cloning strategy may have an application to the rapid development of NDV-vectored vaccines against emerging animal diseases and the generation of different genotypes of recombinant NDVs for cancer therapy.

4.
Vet Microbiol ; 277: 109625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563582

RESUMO

In ovo vaccination is an attractive immunization approach for the poultry industry. However, commonly used Newcastle disease virus (NDV) vaccines cannot be administered in ovo because of the reduced hatchability and embryo mortality. The codon pair deoptimization (CPD) approach has been used to efficiently and rapidly attenuate viruses by targeting the virulence genes. In this study, we aimed to attenuate the NDV LaSota (LS) vaccine strain for in ovo vaccination by CPD of the fusion (F) or/and hemagglutinin-neuraminidase (HN) genes with approximately 44 % suboptimal codon substitutions. Three NDV LS recombinants expressing codon deoptimized F (rLS/F-d), HN (rLS/HN-d), or both genes (rLS/F+HN-d) were generated using reverse genetics technology. Biological assays showed that the CPD viruses retained similar hemagglutination activity and growth ability to the parental rLS virus. The CPD of the HN gene slightly attenuated the rLS/HN-d and rLS/F+HN-d viruses, whereas the CPD of the F gene marginally increased the rLS/F-d virus pathogenicity compared to rLS. Nevertheless, all three CPD rLS viruses were still lethal to 10-day-old specific-pathogen-free (SPF) chicken embryos. In ovo inoculation of 18-day-old SPF chicken embryos with the CPD viruses severely reduced chicken's hatch and survival rates. These results suggested that the CPD of the surface glycoprotein genes of the LS strain at the current level of suboptimal codon substitutions could not sufficiently attenuate the virus for use as an in ovo vaccine, and codon deoptimizing a greater proportion of the F and HN genes or additional gene(s) may be required for sufficient attenuation of the LS strain.


Assuntos
Doença de Newcastle , Vacinas Virais , Embrião de Galinha , Animais , Vírus da Doença de Newcastle , Doença de Newcastle/prevenção & controle , Galinhas , Vacinação/veterinária , Vacinação/métodos , Proteína HN/genética , Códon
5.
PLoS Pathog ; 18(6): e1010564, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35679257

RESUMO

The development of thermostable vaccines can relieve the bottleneck of existing vaccines caused by thermal instability and subsequent poor efficacy, which is one of the predominant reasons for the millions of deaths caused by vaccine-preventable diseases. Research into the mechanism of viral thermostability may provide strategies for developing thermostable vaccines. Using Newcastle disease virus (NDV) as model, we identified the negative surface charge of attachment glycoprotein as a novel determinant of viral thermostability. It prevented the temperature-induced aggregation of glycoprotein and subsequent detachment from virion surface. Then structural stability of virion surface was improved and virus could bind to and infect cells efficiently after heat-treatment. Employing the approach of surface charge engineering, thermal stability of NDV and influenza A virus (IAV) vaccines was successfully improved. The increase in the level of vaccine thermal stability was determined by the value-added in the negative surface charge of the attachment glycoprotein. The engineered live and inactivated vaccines could be used efficiently after storage at 37°C for at least 10 and 60 days, respectively. Thus, our results revealed a novel surface-charge-mediated link between HN protein and NDV thermostability, which could be used to design thermal stable NDV and IAV vaccines rationally.


Assuntos
Doença de Newcastle , Vacinas Virais , Animais , Galinhas/metabolismo , Glicoproteínas , Proteína HN/metabolismo , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/metabolismo
6.
Vaccines (Basel) ; 9(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696297

RESUMO

Newcastle disease (ND) is one of the most economically important poultry diseases. Despite intensive efforts with current vaccination programs, this disease still occurs worldwide, causing significant mortality even in vaccinated flocks. This has been partially attributed to a gap in immunity during the post-hatch period due to the presence of maternal antibodies that negatively impact the replication of the commonly used live vaccines. In ovo vaccines have multiple advantages and present an opportunity to address this problem. Currently employed in ovo ND vaccines are recombinant herpesvirus of turkeys (HVT)-vectored vaccines expressing Newcastle disease virus (NDV) antigens. Although proven efficient, these vaccines have some limitations, such as delayed immunogenicity and the inability to administer a second HVT vaccine post-hatch. The use of live ND vaccines for in ovo vaccination is currently not applicable, as these are associated with high embryo mortality. In this study, recombinant NDV-vectored experimental vaccines containing an antisense sequence of avian interleukin 4 (IL4R) and their backbones were administered in ovo at different doses in 18-day-old commercial eggs possessing high maternal antibodies titers. The hatched birds were challenged with virulent NDV at 2 weeks-of-age. Post-hatch vaccine shedding, post-challenge survival, challenge virus shedding, and humoral immune responses were evaluated at multiple timepoints. Recombinant NDV (rNDV) vaccinated birds had significantly reduced post-hatch mortality compared with the wild-type LaSota vaccine. All rNDV vaccines were able to penetrate maternal immunity and induce a strong early humoral immune response. Further, the rNDV vaccines provided protection from clinical disease and significantly decreased virus shedding after early virulent NDV challenge at two weeks post-hatch. The post-challenge hemagglutination-inhibition antibody titers in the vaccinated groups remained comparable with the pre-challenge titers, suggesting the capacity of the studied vaccines to prevent efficient replication of the challenge virus. Post-hatch survival after vaccination with the rNDV-IL4R vaccines was dose-dependent, with an increase in survival as the dose decreased. This improved survival and the dose-dependency data suggest that novel attenuated in ovo rNDV-based vaccines that are able to penetrate maternal immunity to elicit a strong immune response as early as 14 days post-hatch, resulting in high or full protection from virulent challenge, show promise as a contributor to the control of Newcastle disease.

7.
Arch Virol ; 166(12): 3333-3341, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34591172

RESUMO

The 2014 Ebola outbreak in West Africa resulted in more than 11,000 deaths, highlighting the need for a vaccine. A phase I clinical trial of a human adenovirus type 5 vector-based Ebola virus (EBOV) vaccine (HAdV-5-MakGP) showed that a homologous prime-boost regimen with HAdV-5 vaccine elicited a robust humoral response but a weak cellular immune response. Due to pre-existing anti-vector immunity, boosting with the same vaccine did not increase the magnitude of the cellular immune response, which contributes significantly to protection against EBOV infection. Here, we generated a recombinant Newcastle disease virus (NDV), based on the LaSota vaccine strain, expressing the GP protein of the EBOV variant Makona (rLS/EB-GP) using reverse genetics technology. The humoral and cellular immune responses to this vaccine candidate in mice immunized using a homologous prime-boost regimen or a heterologous prime-boost regimen with the HAdV-5-vectored Ebola vaccine were assessed using ELISA and ELISPOT assays. The ELISA and ELISPOT results showed that mice primed with rLS/EB-GP and boosted with HAdV-5-MakGP (NDV+HAdV-5) or, reversed, primed with HAdV-5-MakGP and boosted with rLS/EB-GP (HAdV-5+NDV) exhibited more-potent EBOV GP-specific antibody and cellular immune responses than those receiving the same vaccine twice. The most robust EBOV GP-specific antibody and T-cell responses were detected in the HAdV-5-MakGP-primed and rLS/EB-GP-boosted (HAdV-5+NDV) mice. These results suggest that the HAdV-5 prime-NDV boost regimen is more effective in stimulating EBOV-specific immunity than homologous regimens alone, indicating the potential boosting ability of the NDV vector in human vaccine use.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Ebolavirus/genética , Vetores Genéticos , Doença pelo Vírus Ebola/prevenção & controle , Imunidade Celular , Camundongos , Vírus da Doença de Newcastle
8.
Vet Microbiol ; 259: 109155, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34197977

RESUMO

Turkey coronavirus (TCoV) can cause a highly contagious enteric disease in turkeys with severe economic losses in the global turkey industry. To date, no commercial vaccines are available for control of the disease. In the present study, we isolated a field strain (NC1743) of TCoV and evaluated its pathogenicity in specific-pathogen-free (SPF) turkey poults to establish a TCoV disease model. The results showed that the TCoV NC1743 isolate was pathogenic to turkey poults with a minimal infectious dose at 106 EID50/bird. About 50 % of one-day-old SPF turkeys infected with the virus's minimal infectious dose exhibited typical enteric disease signs and lesions from 6 days post-infection (dpi) to the end of the experiment (21 dpi). In contrast, fewer than 20 % of older turkeys (1- or 2-week-old) infected with the same amount of TCoV displayed enteric disease signs, which disappeared after 15-18 dpi. Although all infected turkeys, regardless of age, shed TCoV, the older turkeys shed less virus than the younger birds, and 50 % of the 2-week-old birds even cleared the virus at 21 dpi. Furthermore, the viral infection caused day-old turkeys more body-weight-gain reduction than older birds. The overall data demonstrated that the TCoV NC1743 isolate is a highly pathogenic strain and younger turkeys are more susceptible to TCoV infection than older birds. Thus, one-day-old turkeys infected with the minimal infectious dose of TCoV NC1743 could be used as a TCoV disease model to study the disease pathogenesis, and the TCoV NC1743 strain could be used as a challenge virus to evaluate a vaccine protective efficacy.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus do Peru/patogenicidade , Doenças das Aves Domésticas/prevenção & controle , Perus/virologia , Animais , Anticorpos Antivirais/sangue , Infecções por Coronavirus/sangue , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Coronavirus do Peru/classificação , Modelos Animais de Doenças , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos
9.
Gene Ther ; 28(12): 697-717, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32409746

RESUMO

The direct oncolytic effect of Newcastle disease virus (NDV) depends on the following two aspects: the susceptibility of cancer cells to virus infection and the ability of virus itself to lyse cancer cells. First, we investigate the susceptibility of cancer cells to NDV infection, HepG2, MDA-MB-231, and SH-SY5Y cells were susceptible, A549, MCF7, and LoVo cells were less susceptible. To investigate the molecular mechanism responsible for cancer cell susceptibility, transcriptome sequencing was carried out. We found that the levels of alpha-sialic acid acyltransferase were upregulated in MDA-MB-231 cells compared with MCF7 cells, and the interferon was downregulated. Second, to optimize the oncolytic capacity of the wild-type rClone30, a series of chimeric viruses rClone30-Anh(HN), rClone30-Anh(F), and rClone30-Anh(HN-F) were constructed by exchanging the HN gene, F gene or both of non-lytic rClone30 strain with lytic strain Anhinga. rClone30-Anh(F) and rClone30-Anh(HN-F) enhanced the oncolytic effect of the rClone30, and this enhancement is more obvious in the susceptible cells. The oncolytic mechanism of rClone30-Anh(F) was analyzed by transcriptome analyses, in comparison with rClone30, rClone30-Anh(F) upregulated the expression of ATG5, Beclin 1, and MAP1LC3B, thus activating autophagy and promoting the production of syncytia. In conclusion, our study provides a strategy to enhance the oncolytic effect of rClone30.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linhagem Celular Tumoral , Vírus da Doença de Newcastle/genética , Vírus Oncolíticos/genética , Replicação Viral
10.
J Med Virol ; 93(6): 3890-3898, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32779745

RESUMO

Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. However, the potential oncolytic ability of the recombinant newcastle disease virus (NDV) Anhinga strain carried with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has not been fully explored at present. In the present study, the recombinant NDV/Anh-TRAIL that secretes soluble TRAIL was constructed and the experiment results suggested NDV/Anh-TRAIL as a promising candidate for glioma therapy. Growth kinetic and TRAIL secreted quantity of recombinant NDV/Anh-TRAIL virus were measured. Cytotoxic and cell apoptosis were analyzed for its anti-glioma therapy in vitro. Nude mice were used for the in vivo evaluation. Both tumor volume and mice behavior after injection were observed. The recombinant virus replicated with the same kinetics as the parental virus and the highest expression of TRAIL (77.8 ng/L) was found at 48 hours. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole and flow cytometry data revealed that the recombinant NDV/Anh-TRAIL (56.1 ± 8.2%) virus could induce a more severe apoptosis rate, when compared with the NDV wild type (37.2 ± 7.0%) and mock (7.0 ± 1.8%) groups (P < .01), in U251 cells. Furthermore, in the present animal study, the average tumor volume was smaller in the NDV/Anh-TRAIL group (97.21 mm3 ), when compared with the NDV wild type (205.03 mm3 , P < .05) and PBS (310.30 mm3 , P < .01) groups.


Assuntos
Glioma/terapia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Terapia Viral Oncolítica/métodos , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Apoptose , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Nus , Vírus Oncolíticos , Replicação Viral
11.
Front Microbiol ; 11: 769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411112

RESUMO

Many Newcastle disease virus (NDV) strains have been developed as vectors to express a foreign gene (FG) for vaccine and cancer therapy purposes. The non-coding region between the phosphoprotein (P) and matrix protein (M) genes and the non-coding region behind the NP gene open reading frame (ORF) in the NDV genome have been identified as the optimal insertion sites for efficient FG expression through the independent transcription unit (ITU) and the internal ribosomal entry site (IRES) dependent expression approaches, respectively. To date, however, the majority of these NDV vectors express only a single or two FGs from suboptimal insertion sites in the NDV genome, obtaining various levels of FG expression. To improve the FG expression, we generated NDV LaSota vaccine strain-based recombinant viruses expressing two FGs, GFP, and RFP, from the identified optimal insertion sites through a combination of the ITU and IRES-dependent approaches. Biological assessments of the recombinant viruses indicated that the recombinants expressing two FGs were slightly attenuated with approximately one order of magnitude lower in virus titers when compared to the viruses containing a single FG. The FG expression efficiencies from the two-FG viruses were also lower than those from the single-FG viruses. However, the expression of two FGs from the optimal insertion sites was significantly (p < 0.05) higher than those from the suboptimal insertion sites. The expressions of FGs as monocistronic ITU were approximately 4-fold more efficient than those expressed by the bicistronic IRES-dependent approach. These results suggest that the NDV LaSota vector could efficiently express two FGs from the identified optimal insertions sites. The ITU strategy could be used for "vectoring" FGs in circumstances where high expression of gene products (e.g., antigens) is warranted, whereas, the IRES-dependent tactic might be useful when lower amounts of IRES-directed FG products are needed.

12.
Vaccine ; 38(4): 925-932, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31703935

RESUMO

Previously, we have demonstrated that the recombinant Newcastle disease virus (NDV) expressing the infectious laryngotracheitis virus (ILTV) glycoprotein D (gD) conferred protection against both virulent NDV and ILTV challenges in chickens. In this study, we evaluated the genetic stability of the recombinant vaccine after eight serial passages in embryonated chicken eggs (ECE). The vaccine master seed virus at the original egg-passage level 3 (EP3) was diluted and passaged in three separate repetitions (A, B and C) in ECE eight times (EP4 to EP11). RT-PCR analysis of the vaccine seed and egg-passaged virus stocks showed that there was no detectable insertion/deletion in the ILTV gD insert region. Next-generation sequencing analysis of the EP3 and EP11 virus stocks confirmed their genome integrity and revealed a total of thirteen single-nucleotide polymorphisms (SNPs). However, none of these SNPs were located in the ILTV gD insert or any of the known critical biological determinant positions. Virological and immunofluorescent assays provided additional evidence that the EP11 virus stocks retained their growth kinetics, low pathogenicity, and robust level of gD expression comparable to that of the vaccine master seed virus. This indicated that the SNPs were non-detrimental sporadic mutations. These results demonstrated that the insertion of ILTV gD gene into the NDV LaSota backbone did not significantly affect the genetic stability of the recombinant virus and that the rLS/ILTV-gD virus is a safe and genetically stable vaccine candidate after at least eight serial passages in ECE.


Assuntos
Infecções por Herpesviridae/prevenção & controle , Doença de Newcastle/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Embrião de Galinha , Galinhas , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/imunologia , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/imunologia , Inoculações Seriadas , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia
13.
Vaccine ; 36(32 Pt B): 4846-4850, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30037477

RESUMO

Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene therapy. A majority of these NDV vectors express only a single foreign gene through either an independent transcription unit (ITU) or an internal ribosomal entry site (IRES). In the present study, we combined the ITU and IRES methods to generate a novel NDV LaSota strain-based recombinant virus vectoring the red fluorescence protein (RFP) and the green fluorescence protein (GFP) genes. Biological assessments of the recombinant virus, rLS/IRES-RFP/GFP, showed that it was slightly attenuated in vivo, yet maintained similar growth dynamics and viral yields in vitro when compared to the parental LaSota virus. Expression of both the RFP and GFP was detected from the rLS/IRES-RFP/GFP virus-infected DF-1 cells by fluorescence microscopy. These data suggest that the rLS/IRES-RFP/GFP virus may be used as a multivalent vector for the development of vaccines and gene therapy agents.


Assuntos
Doença de Newcastle/genética , Vírus da Doença de Newcastle/genética , Animais , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Sítios Internos de Entrada Ribossomal/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Doença de Newcastle/imunologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Vacinas Virais/uso terapêutico , Proteína Vermelha Fluorescente
14.
Vet Microbiol ; 216: 99-106, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29519533

RESUMO

Administration of vaccines combined with the good management and strict biosecurity is an effective way for Newcastle disease (ND) control. However, vaccine failure is continuously reported in some countries mainly because the antigenic difference between the used vaccine and field strains even they are of one serotype. Therefore, development of antigen-matched ND vaccines is needed to improve the vaccine efficacy in birds. In this study, we introduced four site mutations, K1756A, D1881A, K1917A and E1954Q, respectively, into the large protein gene of the virulent genotype VII Newcastle disease virus (NDV) G7 strain using reverse genetics technology. Four rescued NDVs were sharply attenuated for the pathogenicity in chickens. One of these mutants, E1954Q, was further manipulated by replacing the F cleavage site sequence of typical velogenic strains with that of the LaSota vaccine, resulting in a new mutant, G7M. Biological characterization showed that G7M was safe and genetically stable after serial passages in embryos and chickens. Vaccination of chickens with G7M induced a progressive elevation of the homologous antibodies and markedly higher CD8+ T cell percentage, T cell proliferation and IFN-γ than LaSota. G7M conferred full protection against genotype VII NDV challenge, and more importantly, it effectively reduced the challenge virus replication and shedding in chickens. Together, our data suggest that G7M is a promising genotype VII vaccine candidate, and the novel attenuation approach designed in this study could be used to develop new antigen-matched NDV vaccines.


Assuntos
Genes Virais/genética , Genótipo , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Galinhas/imunologia , Galinhas/virologia , Mutação , Doença de Newcastle/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Virulência , Replicação Viral/imunologia , Eliminação de Partículas Virais/imunologia
15.
Avian Dis ; 61(3): 397-401, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28957002

RESUMO

We previously demonstrated that chickens primed with a recombinant Newcastle disease virus LaSota (rLS) expressing the S2 gene of infectious bronchitis virus (IBV) and boosted with an attenuated IBV Massachusetts (Mass)-type vaccine were protected against IBV Arkansas (Ark)-type virulent challenge. A possible basis for the reported ability of IBV 4/91 (serotype 793/B) vaccine to protect against divergent IBV strains (e.g., QX, Q1, and D1466) in a prime-boost approach with an IBV Mass vaccine is that an immune response against the S2 protein of IBV 4/91 is cross-protective. Therefore, we evaluated the protective capabilities of the S2 protein of IBV 4/91 expressed from rLS. The level of S2 amino acid sequence identity between 4/91 and the Ark challenge strain used in this study (90.7%) is within the range of S2 amino acid sequence identities between 4/91 and Q1 (91%-94%) and QX (89%-94%) strains. Chickens primed with attenuated Mass IBV at 1 day of age and boosted with rLS/IBV.S2-4/91 at 14 days of age were challenged with a virulent Ark IBV strain at 28 days of age. Protection (reduction of clinical signs and viral loads) assessed 5 days postchallenge showed nonsignificant differences between chickens primed with Mass vaccine and boosted with rLS/IBV.S2-4/91 and chickens vaccinated with Mass only. Thus, the observed level of protection is attributable only to the effect of the Mass vaccine, indicating that the S2 of IBV 4/91 does not induce broad cross-protective immunity.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Atenuadas/imunologia , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia
16.
Sci Rep ; 7(1): 4025, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642611

RESUMO

Avian metapneumovirus (AMPV) infects the respiratory and reproductive tracts of domestic poultry, resulting in substantial economic losses for producers. Live attenuated vaccines appear to be the most effective in countries where the disease is prevalent. However, reversion to virulence has been demonstrated in several studies. Therefore, the development of a stable and safe next generation vaccine against the AMPV disease is needed. In the present study, we generated a recombinant Newcastle disease virus (NDV) vectoring the fusion (F) protein and glycoprotein (G) genes of AMPV subtype-C (AMPV-C) as a bivalent vaccine candidate using reverse genetics technology. The recombinant virus, rLS/AMPV-C F&G, was slightly attenuated in vivo, yet maintained similar characteristics in vitro when compared to the parental LaSota virus. Vaccination of turkeys with rLS/AMPV-C F&G induced both AMPV-C and NDV-specific antibody responses, and provided significant protection against pathogenic AMPV-C challenge and complete protection against velogenic NDV challenge. These results suggest that the rLS/AMPV-C F&G recombinant virus is a safe and effective bivalent vaccine candidate and that the expression of both F and G proteins of AMPV-C induces a protective response against the AMPV-C disease.


Assuntos
Vetores Genéticos/genética , Metapneumovirus/genética , Metapneumovirus/imunologia , Vírus da Doença de Newcastle/genética , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Vacinas Virais/genética , Animais , Anticorpos Antivirais/imunologia , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/imunologia , Imunidade Humoral , Imunização , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/virologia , Doenças das Aves Domésticas/prevenção & controle , Perus , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia , Vacinas Virais/imunologia , Eliminação de Partículas Virais
17.
Virology ; 509: 146-151, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28646649

RESUMO

The fusion (F) protein of Newcastle disease virus (NDV) affects viral infection and pathogenicity through mediating membrane fusion. Previously, we found NDV with increased fusogenic activity in which contained T458D or G459D mutation in the F protein. Here, we investigated the effects of these two mutations on viral infection, fusogenicity and pathogenicity. Syncytium formation assays indicated that T458D or G459D increased the F protein cleavage activity and enhanced cell fusion with or without the presence of HN protein. The T458D- or G459D-mutated NDV resulted in a decrease in virus replication or release from cells. The animal study showed that the pathogenicity of the mutated NDVs was attenuated in chickens. These results indicate that these two single mutations in F altered or diminished the requirement of HN for promoting membrane fusion. The increased fusogenic activity may disrupt the cellular machinery and consequently decrease the virus replication and pathogenicity in chickens.


Assuntos
Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/fisiologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Animais , Fusão Celular , Galinhas , Modelos Animais de Doenças , Células Gigantes/virologia , Proteínas Mutantes/genética , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Proteínas Virais de Fusão/genética , Virulência , Replicação Viral
18.
Eur J Pharmacol ; 802: 85-92, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28246027

RESUMO

Newcastle disease virus (NDV) have shown oncolytic therapeutic efficacy in preclinical studies and are currently proved for clinical trials. We have previously reported, for the first time, NDV Anhinga strain has an efficient cancer therapeutic efficacy in hepatoma. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. In this study, we have showed administration of a recombinant NDV Anhinga strain expressing soluble TRAIL (NDV/Anh-TRAIL) results in an efficient suppression of hepatocellular carcinoma without significant toxicity. The results show that recombinant NDV Anhinga strain expressing soluble TRAIL is a promising candidate for hepatoma therapy.


Assuntos
Carcinoma Hepatocelular/terapia , DNA Recombinante/genética , Neoplasias Hepáticas/terapia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Terapia Viral Oncolítica/métodos , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Caspase 3/genética , Proliferação de Células , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos ICR , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T/imunologia , Replicação Viral
19.
PLoS One ; 12(2): e0172812, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28234989

RESUMO

In-ovo vaccination is an attractive immunization approach for poultry industry. However, most of the Newcastle disease virus (NDV) vaccine strains used after hatch are unsafe, as in-ovo vaccines, due to their high pathogenicity for chicken embryos. In this study, we evaluated the safety and immunogenicity of a thermostable NDV strain TS09-C, derived from V4 strain, as in-ovo vaccine. Chickens in-ovo vaccinated with the parental V4 strain displayed greatly reduced hatchability and severe histopathological lesions in both trachea and intestine tissues, while the hatchability was not affected by in-ovo vaccination withTS09-C strain. The safe dose that infected all chicken embryos without obviously histopathological lesions was 103.0 EID50 per bird. In-ovo vaccination of chickens with TS09-C virus conferred complete protection against virulent NDV challenge. Results suggest that the thermostable NDV strain TS09-C is a safe and immunogenic in-ovo vaccine candidate that can be delivered quickly and uniformly, and induce earlier immune response.


Assuntos
Galinhas/imunologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas/imunologia
20.
Vaccine ; 35(5): 789-795, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052812

RESUMO

Newcastle disease virus (NDV) recombinants expressing the infectious laryngotracheitis virus (ILTV) glycoproteins B and D have previously been demonstrated to confer complete clinical protection against virulent ILTV and NDV challenges in naive chickens. We extended this study to assess whether maternally derived antibody (MDA) against NDV and ILTV would interfere with protection in vaccinated broiler chickens. Chickens with a mean NDV MDA hemagglutination inhibition (HI) titer of 6.4 (log2) and detectable ILTV neutralization (VN) antibodies at hatch were vaccinated with rLS/ILTV-gB or rLS/ILTV-gD at 1 or 10day of age (DOA) or on both days. Groups of birds vaccinated with the commercial ILT vaccines (FP-LT and CEO) or sham inoculated were also included in this study. All vaccinated birds were challenged with virulent ILTV strain at 21 DOA. By that time, NDV HI titers declined to 2.6 (log2) in unvaccinated birds, whereas the HI titers in NDV vectored vaccine groups increased to 3.5-6.3 (log2). At standard dosages, both vaccine candidates conferred significant clinical protection; however, the protection elicited by the rLS/ILTV-gD was superior to that of rLS/ILTV-gB. Recombinant rLS/ILTV-gD reduced ILTV shedding from tracheal and ocular tissues by approximately 3 log10 TCID50. Notably, there was no improvement in protection after booster vaccination at 10 DOA. Overall results indicate that the presence of maternal antibodies to NDV and ILTV did not significantly interfere with the ability of the NDV LaSota strain-vectored ILTV gB and gD vaccine candidates to elicit protective immunity against infectious laryngotracheitis.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Infecções por Herpesviridae/veterinária , Doença de Newcastle/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Vacinação , Vacinas Virais/administração & dosagem , Animais , Galinhas/virologia , Expressão Gênica , Testes de Inibição da Hemaglutinação , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/efeitos dos fármacos , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/imunologia , Imunização Secundária , Herança Materna , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/efeitos dos fármacos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fatores de Tempo , Potência de Vacina , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/biossíntese , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA