Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mil Med Res ; 8(1): 57, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724985

RESUMO

BACKGROUND: Mitochondria have been shown to play vital roles during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) development. Currently, it is unclear whether mitochondrial DNA (mtDNA) variants, which define mtDNA haplogroups and determine oxidative phosphorylation performance and reactive oxygen species production, are associated with COVID-19 risk. METHODS: A population-based case-control study was conducted to compare the distribution of mtDNA variations defining mtDNA haplogroups between healthy controls (n = 615) and COVID-19 patients (n = 536). COVID-19 patients were diagnosed based on molecular diagnostics of the viral genome by qPCR and chest X-ray or computed tomography scanning. The exclusion criteria for the healthy controls were any history of disease in the month preceding the study assessment. MtDNA variants defining mtDNA haplogroups were identified by PCR-RFLPs and HVS-I sequencing and determined based on mtDNA phylogenetic analysis using Mitomap Phylogeny. Student's t-test was used for continuous variables, and Pearson's chi-squared test or Fisher's exact test was used for categorical variables. To assess the independent effect of each mtDNA variant defining mtDNA haplogroups, multivariate logistic regression analyses were performed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) with adjustments for possible confounding factors of age, sex, smoking and diseases (including cardiopulmonary diseases, diabetes, obesity and hypertension) as determined through clinical and radiographic examinations. RESULTS: Multivariate logistic regression analyses revealed that the most common investigated mtDNA variations (> 10% in the control population) at C5178a (in NADH dehydrogenase subunit 2 gene, ND2) and A249d (in the displacement loop region, D-loop)/T6392C (in cytochrome c oxidase I gene, CO1)/G10310A (in ND3) were associated with a reduced risk of severe COVID-19 (OR = 0.590, 95% CI 0.428-0.814, P = 0.001; and OR = 0.654, 95% CI 0.457-0.936, P = 0.020, respectively), while A4833G (ND2), A4715G (ND2), T3394C (ND1) and G5417A (ND2)/C16257a (D-loop)/C16261T (D-loop) were related to an increased risk of severe COVID-19 (OR = 2.336, 95% CI 1.179-4.608, P = 0.015; OR = 2.033, 95% CI 1.242-3.322, P = 0.005; OR = 3.040, 95% CI 1.522-6.061, P = 0.002; and OR = 2.890, 95% CI 1.199-6.993, P = 0.018, respectively). CONCLUSIONS: This is the first study to explore the association of mtDNA variants with individual's risk of developing severe COVID-19. Based on the case-control study, we concluded that the common mtDNA variants at C5178a and A249d/T6392C/G10310A might contribute to an individual's resistance to developing severe COVID-19, whereas A4833G, A4715G, T3394C and G5417A/C16257a/C16261T might increase an individual's risk of developing severe COVID-19.


Assuntos
COVID-19 , DNA Mitocondrial , COVID-19/genética , Estudos de Casos e Controles , China , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Filogenia , Fatores de Risco
2.
Ecotoxicology ; 19(1): 69-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19629681

RESUMO

The seedling development and physiological responses of Iris pseudacorus L. to Pb and Cd and their combination were studied for 28 days liquid culture and sub-cellular localization of Pb and Cd in the root tip cells treated with 2,070 mg L(-1) Pb and 1,000 mg L(-1)Cd for 16 days sand culture was evaluated. Results showed that the dry weights (DWs) of shoots and roots of I. pseudacorus were significantly decreased at 500 mg L(-1)Pb and 25 mg L(-1)Cd + 500 mg L(-1)Pb treatments and the root DWs under all treatments were significantly decreased in comparison with that of control. The concentrations of Chla in the leaves were decreased at all treatments, while, the concentrations of Chlb and total carotenoids were not significantly decreased under 25 mg L(-1)Cd and 25 mg L(-1)Cd + 500 mg L(-1)Pb treatments. The MDA and proline concentrations and POD activities in the shoots and roots were increased under treatments of 500 mg L(-1)Pb and 25 mg L(-1)Cd + 500 mg L(-1)Pb, but POD activities in the shoots and roots and MDA concentrations in the shoots were significantly decreased at 25 mg L(-1) Cd treatment. The results of sub-cellular localization of Pb and Cd showed that numerous Pb deposits were found on the inner surface of died cell walls in the cortex treated with 2,070 mg L(-1) Pb and Cd deposits were found in the cell wall treated with 1,000 mg L(-1) Cd. Pb and Cd deposits were not found in the cytoplasm. The results indicated that POD and proline showed strong beneficial properties against Pb and Cd stress and there were some mechanisms keeping most cells with normal activities in the plant from Pb toxicity by sacrificing a few cells that accumulated a large amount Pb. Sub-cellular localizations of Pb and Cd in the root tip cells of I. pseudacorus were little difference with the localizations in other species of Iris in the previous studies.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Gênero Iris/efeitos dos fármacos , Gênero Iris/metabolismo , Chumbo/toxicidade , Análise de Variância , Biodegradação Ambiental , Biomassa , Cádmio/farmacocinética , Poluentes Ambientais/farmacocinética , Gênero Iris/crescimento & desenvolvimento , Chumbo/farmacocinética , Malondialdeído/metabolismo , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Prolina/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA