RESUMO
Lactate-derived histone lactylation is involved in multiple pathological processes through transcriptional regulation. The role of lactate-derived histone lactylation in the repair of spinal cord injury (SCI) remains unclear. Here we report that overall lactate levels and lactylation are upregulated in the spinal cord after SCI. Notably, H4K12la was significantly elevated in the microglia of the injured spinal cord, whereas exogenous lactate treatment further elevated H4K12la in microglia after SCI. Functionally, lactate treatment promoted microglial proliferation, scar formation, axon regeneration, and locomotor function recovery after SCI. Mechanically, lactate-mediated H4K12la elevation promoted PD-1 transcription in microglia, thereby facilitating SCI repair. Furthermore, a series of rescue experiments confirmed that a PD-1 inhibitor or microglia-specific AAV-sh-PD-1 significantly reversed the therapeutic effects of lactate following SCI. This study illustrates the function and mechanism of lactate/H4K12la/PD-1 signaling in microglia-mediated tissue repair and provides a novel target for SCI therapy.
Assuntos
Histonas , Ácido Láctico , Microglia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Histonas/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Ácido Láctico/metabolismo , Ratos , Lisina/metabolismo , Lisina/análogos & derivados , Lisina/farmacologia , Camundongos , Cicatriz/metabolismo , Cicatriz/patologia , Feminino , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Masculino , Locomoção/efeitos dos fármacos , Locomoção/fisiologiaRESUMO
Plant species identity influences soil microbial communities directly by host specificity and root exudates, and indirectly by changing soil properties. As a native pioneer species common in early successional communities, Masson pine (Pinus massoniana) forests are widely distributed in subtropical China, and play a key role in improving ecosystem productivity. However, how pine forest composition, especially the dominance of plant functional groups, affects soil microbial diversity remains unclear. Here, we investigated linkages among woody plant composition, soil physicochemical properties, and microbial diversity in forests along a dominance gradient of Masson pine. Soil bacterial and fungal communities were mainly explained by woody plant community composition rather than by woody species alpha diversity, with the dominance of tree (without including shrub) species and ectomycorrhizal woody plant species accounting for more of the variation among microbial communities than pine dominance alone. Structural equation modeling revealed that bacterial diversity was associated with woody plant compositional variation via altered soil physicochemical properties, whereas fungal diversity was directly driven by woody plant composition. Bacterial functional groups involved in carbohydrate and amino acid metabolism were negatively correlated with the availability of soil nitrogen and phosphorus, whereas saprotrophic and pathogenic fungal groups showed negative correlations with the dominance of tree species. These findings indicate strong linkages between woody plant composition than soil microbial diversity; meanwhile, the high proportion of unexplained variability indicates great necessity of further definitive demonstration for better understanding of forest-microbe interactions and associated ecosystem processes.
RESUMO
Following spinal cord injury (SCI), fibrotic scar inhibits axon regeneration and impairs neurological function recovery. It has been reported that T cell-derived interferon (IFN)-γ plays a pivotal role in promoting fibrotic scarring in neurodegenerative disease. However, the role of IFN-γ in fibrotic scar formation after SCI has not been declared. In this study, a spinal cord crush injury mouse was established. Western blot and immunofluorescence showed that IFN-γ was surrounded by fibroblasts at 3, 7, 14, and 28 days post-injury. Moreover, IFN-γ is mainly secreted by T cells after SCI. Further, in situ injection of IFN-γ into the normal spinal cord resulted in fibrotic scar formation and inflammation response at 7 days post-injection. After SCI, the intraperitoneal injection of fingolimod (FTY720), a sphingosine-1-phosphate receptor 1 (S1PR1) modulator and W146, an S1PR1 antagonist, significantly reduced T cell infiltration, attenuating fibrotic scarring via inhibiting IFN-γ/IFN-γR pathway, while in situ injection of IFN-γ diminished the effect of FTY720 on reducing fibrotic scarring. FTY720 treatment inhibited inflammation, decreased lesion size, and promoted neuroprotection and neurological recovery after SCI. These findings demonstrate that the inhibition of T cell-derived IFN-γ by FTY720 suppressed fibrotic scarring and contributed to neurological recovery after SCI.
Assuntos
Doenças Neurodegenerativas , Traumatismos da Medula Espinal , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Cicatriz/tratamento farmacológico , Cicatriz/etiologia , Cicatriz/metabolismo , Interferon gama , Axônios/patologia , Doenças Neurodegenerativas/patologia , Regeneração Nervosa/fisiologia , Fibrose , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Inflamação/patologia , Medula Espinal/metabolismoRESUMO
BACKGROUND: Our previous study demonstrated that M1 macrophages could impair tight junctions (TJs) between vascular endothelial cells by secreting interleukin-6 (IL-6) after spinal cord injury (SCI). Tocilizumab, as a humanized IL-6 receptor (IL-6R) monoclonal antibody approved for the clinic, has been applied in the treatment of neurological diseases in recent years, but the treatment effect of Tocilizumab on the TJs restoration of the blood-spinal cord barrier (BSCB) after SCI remains unclear. This study aimed to explore the effect of Tocilizumab on the restoration of TJs between vascular endothelial cells and axon regeneration after SCI. METHODS: In this study, the mouse complete spinal cord crush injury model was used, and Tocilizumab was continuously injected intrathecally until the day of sample collection. A PBS injection in the same location was included as a control. At 14 days postinjury (dpi) and 28 dpi, spinal cord tissue sections were examined via tissue immunofluorescence. The Basso Mouse Scale (BMS) scores and footprint analysis were used to verify the effect of Tocilizumab on the recovery of motor function in mice after SCI. RESULTS: We demonstrated that depletion of macrophages has no effect on axon regeneration and motor functional recovery after SCI, but mice subjected to Tocilizumab showed a significant increase in axon regeneration and a better recovery in motor function during the chronic phase after SCI. Moreover, our study demonstrated that at 14 and 28 dpi, the expression of claudin-5 (CLDN5) and zonula occludens-1 (ZO-1) between vascular endothelial cells was significantly increased and the leakage of BSCB was significantly reduced in the injured core after daily intrathecal injection of Tocilizumab. Notably, the infiltration of CD68+ macrophages/microglia and the formation of fibrotic scar were decreased in the injured core after Tocilizumab treatment. Tocilizumab treatment could effectively reduce the IL-6 expression in macrophages in the injured core. CONCLUSION: The application of Tocilizumab to antagonize IL-6R can effectively reduce the expression of IL-6 in macrophages and facilitate TJs restoration of the BSCB, which is beneficial for axon regeneration and motor functional recovery after SCI. Hence, Tocilizumab treatment is a potential therapeutic strategy for SCI.
Assuntos
Traumatismos da Medula Espinal , Junções Íntimas , Camundongos , Animais , Junções Íntimas/metabolismo , Axônios/metabolismo , Células Endoteliais/metabolismo , Interleucina-6/farmacologia , Regeneração Nervosa , Traumatismos da Medula Espinal/metabolismoRESUMO
Clearance of myelin debris caused by acute demyelination is an essential process for functional restoration following spinal cord injury (SCI). Microvascular endothelial cells, acting as "amateur" phagocytes, have been confirmed to engulf and degrade myelin debris, promoting the inflammatory response, robust angiogenesis, and persistent fibrosis. However, the effect of myelin debris engulfment on the function of endothelial tight junctions (TJs) remains unclear. Here, we demonstrate that myelin debris uptake impairs TJs and gap junctions of endothelial cells in the lesion core of the injured spinal cord and in vitro, resulting in increased permeability and leakage. We further show that myelin debris acts as an inducer to regulate the endothelial-to-mesenchymal transition in a dose-dependent manner and promotes endothelial cell migration through the PI3K/AKT and ERK signaling pathways. Together, our results indicate that myelin debris engulfment impairs TJs and promotes the migration of endothelial cells. Accelerating myelin debris clearance may help maintain blood-spinal cord barrier integrity, thus facilitating restoration of motor and sensory function following SCI.
Assuntos
Bainha de Mielina , Traumatismos da Medula Espinal , Humanos , Bainha de Mielina/metabolismo , Células Endoteliais/metabolismo , Macrófagos/patologia , Junções Íntimas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismoRESUMO
Background: Osteosarcoma (OSA), a focus for orthopedic surgeons, always results in severe death due to metastasis. CD146 is severely expressed in several tumors, indicating its potential as a biomarker for OSA. Method: Two OSA cohorts were enrolled in this study. A Therapeutically Applicable Research to Generate Effective Treatments-Osteosarcoma (TARGET-OS) cohort was used as a training cohort, and GSE21257 was used as the external validation cohort. The R package "limma" was used to discriminate the differentially expressed genes among CD146-high and CD146-low patients and was further annotated by the enriched signaling pathways. The R package MOVICS was used to evaluate immune infiltration and the response to chemotherapy and immunotherapy. All statistical analyses were performed by R version 4.0.2, and p < 0.05 was considered statistically significant. Result: CD146 plays an important role in promoting the progression, invasion, and metastasis of several tumors. In the current study, we first revealed an integrative unfavorable prognosis in patients with tumors (p < 0.01, HR: 1.10, 95% CI: 1.07-1.14). CD146 is tightly correlated with m5C RNA methylation modification genes in OSA. Furthermore, we revealed that CD146 acts as an oncogene in OSA patients and is linked to poor prognosis in both the TARGET-OS cohort (p = 0.019, HR: 2.61, 95% CI: 1.171-5.834) and the GSE21257 cohort (p = 0.005, HR: 3.61, 95% CI: 1.474-8.855), with a total of 137 patients, regardless of whether they were adjusted for clinical pathological features. Highly-expressed CD146 impacts the signaling pathways of cytokineâcytokine receptor interactions and is associated with the high infiltration of immunocytes. Moreover, patients with high CD146 expression were more likely to be sensitive to anti-PD-1 immunotherapy, while patients with low expression of CD146 were more likely to be sensitive to cisplatin and doxorubicin chemotherapy. Conclusion: Overall, CD146 is an independent prognostic factor for OSA patients and can help doctors select clinical treatment strategies.
RESUMO
BACKGROUND: Fibrotic scar formation and inflammation are characteristic pathologies of spinal cord injury (SCI) in the injured core, which has been widely regarded as the main barrier to axonal regeneration resulting in permanent functional recovery failure. Pericytes were shown to be the main source of fibroblasts that form fibrotic scar. However, the mechanism of pericyte-fibroblast transition after SCI remains elusive. METHODS: Fibrotic scarring and microvessels were assessed using immunofluorescence staining after establishing a crush SCI model. To study the process of pericyte-fibroblast transition, we analyzed pericyte marker and fibroblast marker expression using immunofluorescence. The distribution and cellular origin of platelet-derived growth factor (PDGF)-BB were examined with immunofluorescence. Pericyte-fibroblast transition was detected with immunohistochemistry and Western blot assays after PDGF-BB knockdown and blocking PDGF-BB/PDGFRß signaling in vitro. Intrathecal injection of imatinib was used to selectively inhibit PDGF-BB/PDGFRß signaling. The Basso mouse scale score and footprint analysis were performed to assess functional recovery. Subsequently, axonal regeneration, fibrotic scarring, fibroblast population, proliferation and apoptosis of PDGFRß+ cells, microvessel leakage, and the inflammatory response were assessed with immunofluorescence. RESULTS: PDGFRß+ pericytes detached from the blood vessel wall and transitioned into fibroblasts to form fibrotic scar after SCI. PDGF-BB was mainly distributed in the periphery of the injured core, and microvascular endothelial cells were one of the sources of PDGF-BB in the acute phase. Microvascular endothelial cells induced pericyte-fibroblast transition through the PDGF-BB/PDGFRß signaling pathway in vitro. Pharmacologically blocking the PDGF-BB/PDGFRß pathway promoted motor function recovery and axonal regeneration and inhibited fibrotic scar formation. After fibrotic scar formation, blocking the PDGFRß receptor inhibited proliferation and promoted apoptosis of PDGFRß+ cells. Imatinib did not alter pericyte coverage on microvessels, while microvessel leakage and inflammation were significantly decreased after imatinib treatment. CONCLUSIONS: We reveal that the crosstalk between microvascular endothelial cells and pericytes promotes pericyte-fibroblast transition through the PDGF-BB/PDGFRß signaling pathway. Our finding suggests that blocking the PDGF-BB/PDGFRß signaling pathway with imatinib contributes to functional recovery, fibrotic scarring, and inflammatory attenuation after SCI and provides a potential target for the treatment of SCI.
RESUMO
Brevinins exhibit a wide range of structural features and strong biological activities. Brevinin-2, derived from several amphibians, has shown antimicrobial activities. However, little is known about the wound-healing activity of brevinin-2. In this study, brevinin-2 cDNA was identified from the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus) and it comprises a signal peptide, a propeptide, and a mature peptide. Sequence alignment with brevinin-2 derived from other amphibians showed variability of the mature peptide, and the presence of a C-terminal cyclic heptapeptide domain (Cys-Lys-Xaa4-Cys) in the mature peptide. Dark-spotted frog brevinin-2 belonged to the brevinin-2 cluster and was closely related to brevinin-2HB1 from Pelophylax hubeiensis. Synthetic dark-spotted frog brevinin-2 mature peptide (brevinin-2PN) exhibited antibacterial activity against several pathogens by destroying cell membrane integrity and hydrolysis of genomic DNA. Brevinin-2PN exhibited significant wound-healing activity by accelerating the healing of human skin fibroblast cell scratches, influencing cell migration, and stimulating gene expression of growth factors.
Assuntos
Proteínas de Anfíbios , Peptídeos Antimicrobianos , Sequência de Aminoácidos , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Anuros/genética , DNA Complementar/metabolismo , Humanos , Sinais Direcionadores de Proteínas , Ranidae/genética , Pele/metabolismoRESUMO
BACKGROUND: Excessively deposited fibrotic scar after spinal cord injury (SCI) inhibits axon regeneration. It has been reported that platelet-derived growth factor receptor beta (PDGFRß), as a marker of fibrotic scar-forming fibroblasts, can only be activated by platelet-derived growth factor (PDGF) B or PDGFD. However, whether the activation of the PDGFRß pathway can mediate fibrotic scar formation after SCI remains unclear. METHODS: A spinal cord compression injury mouse model was used. In situ injection of exogenous PDGFB or PDGFD in the spinal cord was used to specifically activate the PDGFRß pathway in the uninjured spinal cord, while intrathecal injection of SU16f was used to specifically block the PDGFRß pathway in the uninjured or injured spinal cord. Immunofluorescence staining was performed to explore the distributions and cell sources of PDGFB and PDGFD, and to evaluate astrocytic scar, fibrotic scar, inflammatory cells and axon regeneration after SCI. Basso Mouse Scale (BMS) and footprint analysis were performed to evaluate locomotor function recovery after SCI. RESULTS: We found that the expression of PDGFD and PDGFB increased successively after SCI, and PDGFB was mainly secreted by astrocytes, while PDGFD was mainly secreted by macrophages/microglia and fibroblasts. In addition, in situ injection of exogenous PDGFB or PDGFD can lead to fibrosis in the uninjured spinal cord, while this profibrotic effect could be specifically blocked by the PDGFRß inhibitor SU16f. We then treated the mice after SCI with SU16f and found the reduction of fibrotic scar, the interruption of scar boundary and the inhibition of lesion and inflammation, which promoted axon regeneration and locomotor function recovery after SCI. CONCLUSIONS: Our study demonstrates that activation of PDGFRß pathway can directly induce fibrotic scar formation, and specific blocking of this pathway would contribute to the treatment of SCI.
Assuntos
Axônios , Cicatriz , Indóis , Regeneração Nervosa , Pirróis , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Traumatismos da Medula Espinal , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Cicatriz/tratamento farmacológico , Cicatriz/etiologia , Cicatriz/metabolismo , Cicatriz/patologia , Fibrose , Indóis/farmacologia , Locomoção , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Pirróis/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Recuperação de Função Fisiológica , Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologiaRESUMO
BACKGROUND: Ipsilateral femoral neck and intertrochanteric fractures in young patients are extremely rare, and there is no reference for fracture classification and treatment options. CASE SUMMARY: We report a 27-year-old male patient who sustained ipsilateral femoral neck and intertrochanteric fractures and was treated with a proximal femoral locking compression plate (PFLCP). The literature on these fractures was also reviewed. At the last follow-up three years after surgery, the patient had no obvious pain in the hip, and the range of motion in the hip joint was slightly limited, but met the normal life and work needs. There were no complications such as necrosis of the femoral head. CONCLUSION: The PFLCP can be used to treat these complex proximal femoral fractures, and selection should be based on the patient's specific fractures.
RESUMO
After spinal cord injury (SCI), endogenous angiogenesis occurs in the injury core, unexpectedly accompanied by continuous leakage of the blood-spinal cord barrier (BSCB), which may be caused by destruction of the tight junctions (TJs) between vascular endothelial cells-an important structure of the BSCB. Blood-derived macrophages infiltrate into the spinal cord, aggregate to the injury core and then polarize toward M1/M2 phenotypes after SCI. However, the effect of macrophages with different polarizations on the TJs between vascular endothelial cells remains unclear. Here, we demonstrated that from 7 days postinjury (dpi) to 28 dpi, accompanied by the aggregation of macrophages, the expression of claudin-5 (CLN-5) and zonula occludens-1 (ZO-1) in vascular endothelial cells in the injury core was significantly decreased in comparison to that in normal spinal cord tissue and in the penumbra. Moreover, the leakage of the BSCB was severe in the injury core, as demonstrated by FITC-dextran perfusion. Notably, our study demonstrated that depletion of macrophages facilitated the restoration of TJs between vascular endothelial cells and decreased the leakage of BSCB in the injury core after SCI. Furthermore, we confirmed that the endothelial TJs could be impaired by M1 macrophages through secreting IL-6 in vitro, leading to an increased permeability of endothelial cells, but it was not significantly affected by M0 and M2 macrophages. These results indicated that the TJs between vascular endothelial cells were impaired by M1 macrophages in the injury core, potentially resulting in continuous leakage of the BSCB after SCI. Preventing M1 polarization of macrophages or blocking IL-6 in the injury core may promote restoration of the BSCB, thus accelerating functional recovery after SCI.
Assuntos
Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Traumatismos da Medula Espinal , Junções Íntimas/fisiologia , Animais , Modelos Animais de Doenças , Ratos , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologiaRESUMO
The ß-defensins are important components of the vertebrate innate immune system. While mammalian ß-defensins have wide-ranging antibacterial and immunomodulatory activities, those of amphibians remain largely uncharacterised. In this study, ß-defensin cDNA was identified from the skin transcriptome of the Chinese spiny frog Quasipaa spinosa. This ß-defensin (QS-BD) consists of a signal and a mature peptide. Sequence alignments with other amphibian ß-defensins showed conservation of the functional mature peptide and that its closest relative is ß-defensin from Zhangixalus puerensis. Synthetic QS-BD showed antibacterial activity against Vibrio vulnificus, Vibrio harveyi, Streptococcus iniae, and Aeromonas hydrophila. QS-BD showed bactericidal activity by destroying the cell membrane integrity, but did not hydrolyse genomic DNA. QS-BD treatment promoted respiratory bursts and upregulated the expression of interleukin-1ß and tumour necrosis factor-α in the murine leukemic monocyte/macrophage cell line RAW264.7. This is the first demonstration of immunomodulatory activity by an amphibian ß-defensin.
Assuntos
beta-Defensinas , Animais , Antibacterianos/metabolismo , Anuros/metabolismo , China , Mamíferos , Camundongos , Ranidae/genética , beta-Defensinas/genética , beta-Defensinas/metabolismoRESUMO
Background: Primary leiomyosarcoma of the bone (LMSB) is an extremely rare, invasive, and highly destructive primary osteosarcoma with limited treatment options and poor prognosis. Only a few case reports of LMSB have been described because of its rarity. Therefore, clinicians have a limited understanding of its diagnosis, treatment, and prognosis, and the final diagnosis depends on histopathological findings. In this report, we describe a rare case of primary LMSB in the trochanteric region of the femur. Reporting this case may increase the dissemination and understanding of information regarding LMSB and provide a reference for the diagnosis and treatment of similar cases. Case presentation: A 63-year-old woman presented with pain and limited movement of the left hip, which had lasted for 3 months, with no history of trauma or illness. Plain radiography and computed tomography revealed a solitary osteolytic lesion in the trochanteric area of the left femur with focal cortical destruction. Magnetic resonance imaging findings suggested invasion of the lesion into the bone cortex, forming a soft tissue mass, although no distant positive findings were observed on a whole-body bone scan. A bone tumor puncture biopsy was performed to obtain a final diagnosis, and histopathological evaluation revealed left femoral intertrochanteric leiomyosarcoma, classified as G1T2M0 and staged as IB (extracompartmental low-grade malignant) according to the Enneking staging system. Thus, we performed extensive debridement and left hip arthroplasty. Postoperative chemotherapy was administered, and the patient was followed up for 4 years. Four years later, the patient's left hip pain had resolved, joint activity was good, and no signs of recurrence or distant metastasis of the bone tumor were noted. Conclusion: For proximal femoral Enneking stage IB LMSB, extensive tumor resection combined with tumor prosthesis replacement may be an effective treatment method to prolong the patient's lifespan and to restore joint function.
RESUMO
After spinal cord injury (SCI), astrocytes gradually migrate to and surround the lesion, depositing chondroitin sulfate proteoglycan-rich extracellular matrix and forming astrocytic scar, which limits the spread of inflammation but hinders axon regeneration. Meanwhile, microglia gradually accumulate at the lesion border to form microglial scar and can polarize to generate a pro-inflammatory M1 phenotype or an anti-inflammatory M2 phenotype. However, the effect of microglia polarization on astrocytes is unclear. Here, we found that both microglia (CX3CR1+) and astrocytes (GFAP+) gathered at the lesion border at 14 days post-injury (dpi). The microglia accumulated along the inner border of and in direct contact with the astrocytes. M1-type microglia (iNOS+CX3CR1+) were primarily observed at 3 and 7 dpi, while M2-type microglia (Arg1+CX3CR1+) were present at larger numbers at 7 and 14 dpi. Transforming growth factor-ß1 (TGFß1) was highly expressed in M1 microglia in vitro, consistent with strong expression of TGFß1 by microglia in vivo at 3 and 7 dpi, when they primarily exhibited an M1 phenotype. Furthermore, conditioned media from M1-type microglia induced astrocytes to secrete chondroitin sulfate proteoglycan in vitro. This effect was eliminated by knocking down sex-determining region Y-box 9 (SOX9) in astrocytes and could not be reversed by treatment with TGFß1. Taken together, our results suggest that microglia undergo M1 polarization and express high levels of TGFß1 at 3 and 7 dpi, and that M1-type microglia induce astrocytes to deposit chondroitin sulfate proteoglycan via the TGFß1/SOX9 pathway. The study was approved by the Institutional Animal Care and Use Committee of Anhui Medical University, China (approval No. LLSC20160052) on March 1, 2016.
RESUMO
BACKGROUND: The Stephania tetrandra S. Moore (S. tetrandra) is a medicinal plant belonging to the family Menispermaceae that has high medicinal value and is well worth doing further exploration. The wild resources of S. tetrandra were widely distributed in tropical and subtropical regions of China, generating potential genetic diversity and unique population structures. The geographical origin of S. tetrandra is an important factor influencing its quality and price in the market. In addition, the species relationship within Stephania genus still remains uncertain due to high morphological similarity and low support values of molecular analysis approach. The complete chloroplast (cp) genome data has become a promising strategy to determine geographical origin and understand species evolution for closely related plant species. Herein, we sequenced the complete cp genome of S. tetrandra from Zhejiang Province and conducted a comparative analysis within Stephania plants to reveal the structural variations, informative markers and phylogenetic relationship of Stephania species. RESULTS: The cp genome of S. tetrandra voucher ZJ was 157,725 bp, consisting of a large single copy region (89,468 bp), a small single copy region (19,685 bp) and a pair of inverted repeat regions (24,286 bp each). A total of 134 genes were identified in the cp genome of S. tetrandra, including 87 protein-coding genes, 8 rRNA genes, 37 tRNA genes and 2 pseudogene copies (ycf1 and rps19). The gene order and GC content were highly consistent in the Stephania species according to the comparative analysis results, with the highest RSCU value in arginine (1.79) and lowest RSCU value in serine of S. tetrandra, respectively. A total of 90 SSRs have been identified in the cp genome of S. tetrandra, where repeats that consisting of A or T bases were much higher than that of G or C bases. In addition, 92 potential RNA editing sites were identified in 25 protein-coding genes, with the most predicted RNA editing sites in ndhB gene. The variations on length and expansion extent to the junction of ycf1 gene were observed between S. tetrandra vouchers from different regions, indicating potential markers for further geographical origin discrimination. Moreover, the values of transition to transversion ratio (Ts/Tv) in the Stephania species were significantly higher than 1 using Pericampylus glaucus as reference. Comparative analysis of the Stephania cp genomes revealed 5 highly variable regions, including 3 intergenic regions (trnH-psbA, trnD-trnY, trnP) and two protein coding genes (rps16 and ndhA). The identified mutational hotspots of Stephania plants exhibited multiple SNP sites and Gaps, as well as different Ka/Ks ratio values. In addition, five pairs of specific primers targeting the divergence regions were accordingly designed, which could be utilized as potential molecular markers for species identification, population genetic and phylogenetic analysis in Stephania species. Phylogenetic tree analysis based on the conserved chloroplast protein coding genes indicated a sister relationship between S. tetrandra and the monophyletic group of S. japonica and S. kwangsiensis with high support values, suggesting a close genetic relationship within Stephania plants. However, two S. tetrandra vouches from different regions failed to cluster into one clade, confirming the occurrences of genetic diversities and requiring further investigation for geographical tracing strategy. CONCLUSIONS: Overall, we provided comprehensive and detailed information on the complete chloroplast genome and identified nucleotide diversity hotspots of Stephania species. The obtained genetic resource of S. tetrandra from Zhejiang Province would facilitate future studies in DNA barcode, species discrimination, the intraspecific and interspecific variability and the phylogenetic relationships of Stephania plants.
Assuntos
Genoma de Cloroplastos , Menispermaceae , Stephania tetrandra , Estrutura Molecular , FilogeniaRESUMO
Recent research indicates that after spinal cord injury (SCI), microglia accumulate at the borders of lesions between astrocytic and fibrotic scars and perform inflammation-limiting and neuroprotective functions, however, the mechanism of microglial migration remains unclear. Fascin-1 is a key actin-bundling protein that regulates cell migration, invasion and adhesion, but its role during SCI has not been reported. Here, we found that at 7-14 days after SCI in mice, Fascin-1 is significantly upregulated, mainly distributed around the lesion, and specifically expressed in CX3CR1-positive microglia. However, Fascin-1 is not expressed in GFAP-positive astrocytes, NeuN-positive neurons, NG2-positive cells, PDGFRß-positive cells, or blood-derived Mac2-positive macrophages infiltrating into the lesion core. The expression of Fascin-1 is correspondingly decreased after microglia are specifically depleted in the injured spinal cord by the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622. The upregulation of Fascin-1 expression is observed when microglia are activated by myelin debris in vitro, and microglial migration is prominently increased. The inhibition of Fascin-1 expression using small interfering RNA (siRNA) markedly suppresses the migration of microglia, but this effect can be reversed by treatment with myelin. The M1/M2-like polarization of microglia does not affect the expression of Fascin-1. Together, our results suggest that Fascin-1 is highly expressed specifically in microglia after SCI and can play an important role in the migration of microglia and the formation of microglial scars. Hence, the elucidation of this mechanism will provide novel therapeutic targets for the treatment of SCI.
RESUMO
The failure of axonal regeneration after spinal cord injury (SCI) results in permanent loss of sensorimotor function. The persistent presence of scar tissue, mainly fibrotic scar and astrocytic scar, is a critical cause of axonal regeneration failure and is widely accepted as a treatment target for SCI. Astrocytic scar has been widely investigated, while fibrotic scar has received less attention. Here, we review recent advances in fibrotic scar formation and its crosstalk with other main cellular components in the injured core after SCI, as well as its cellular origin, function, and mechanism. This study is expected to provide an important basis and novel insights into fibrotic scar as a treatment target for SCI.
RESUMO
Gankyrin is a regulatory subunit of the 26-kD proteasome complex and promotes the occurrence and progression of many malignancies. However, the role of gankyrin in osteosarcoma (OS) metastasis remains unclear. Hedgehog signalling has been shown to regulate stem cell homeostasis and cancer metastasis, but the mechanisms that activate this pathway in OS are still poorly understood. Here, a series of in vitro and in vivo assays were carried out to explore the function and mechanism of gankyrin regulating Hedgehog signalling in OS. We demonstrated that gankyrin promotes migration, invasion and regulates the expression of some stemness factors by up-regulating Gli1 in OS. Importantly, our data showed an interaction between gankyrin and Gli1. Moreover, gankyrin suppresses the ubiquitin-mediated degradation of Gli1 protein in OS. Gankyrin also significantly promotes the lung metastasis of OS in vivo. Our findings suggest that gankyrin drives metastasis and regulates the expression of some stemness factors in osteosarcoma by activating Hedgehog signalling, indicating that drug screening for compounds targeting gankyrin may contribute to the development of novel and effective therapies for OS.
RESUMO
Platelet derived growth factor receptor ß positive (PDGFRß+) pericytes form fibrotic scar, which prevents axonal regeneration after spinal cord injury (SCI). However, the mechanism by which PDGFRß+ pericytes migrate to the injury core is unclear. Here, we investigated the effect and mechanism of macrophages polarization on PDGFRß+ pericytes migration after SCI. Macrophages were closely related to the spatiotemporal distribution of PDGFRß+ pericytes in the injury core at 3, 7, and 14 days postinjury (dpi). Macrophages appeared M2 polarization at 3 and 7 dpi while M1 polarization at 14 dpi. The expression of platelet derived growth factor B (PDGFB) was significantly increased after SCI and after macrophages M2 polarization. The promoting effect of exogenous PDGFB and M2 macrophages conditioned medium on PDGFRß+ pericytes migration could be blocked by SU16f, a PDGFRß specific inhibitor. These findings indicate that M2 macrophages can secrete PDGFB acting on PDGFRß to promote PDGFRß+ pericytes migration, which can be blocked by a PDGFRß specific inhibitor SU16f. The PDGFB/PDGFRß pathway is a promising new target for the treatment of SCI.
RESUMO
The Chong'an Mustache Toad, Leptobrachium liui (Pope, 1947) is a Chinese endemic species, inhabiting the mountain streams with rich vegetation in southeastern China. The first complete mitochondrial genome (mitogenome) of L. liui was assembled using the data of whole-genome sequencing. The size of the complete mitogenome for L. liui was 17,190 bp, which included 13 PCGs, 23 tRNAs with two concatenated tRNAMet genes, 2 rRNAs, a non-coding region, and a D-loop. The Bayesian tree shows that L. liui was positioned near L. leishanense within the genus Leptobrachium.