Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Magn Reson Imaging ; 111: 47-56, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38513789

RESUMO

PURPOSE: Diffusion-weighted imaging (DWI) holds promise for image-guided radiotherapy (MRgRT) in prostate cancer. However, challenges persist due to image distortion, artifacts, and apparent diffusion coefficient (ADC) reproducibility issues. This study aimed to assess DWI image quality and ADC reproducibility on both a 1.5 T MR-simulator and a 1.5 T MR-Linac, employing measurements from both an ACR MRI phantom and prostate cancer patients undergoing MRgRT. METHODS: DW-MRI scans were conducted on 19 patients (mean age = 69 ± 8 years, with 23 MR-visible intra-prostatic lesions) and an ACR MRI phantom using a 1.5 T MR-simulator (b-values = 0, 800, 1400s/mm2) and a 1.5 T MR-Linac (b-values = 50, 500, 800 s/mm2). ADC homogeneity in the phantom was evaluated via 1D profile flatness (FL) in three directions. Image quality was assessed through qualitative 5-point Likert scale ratings and quantitative ADC and signal-to-noise ratio (SNR) measurements. Intra-observer reproducibility of image quality scores was evaluated using ICC(1, 2). Geometric distortion was measured by comparing landmark sizes on the ACR phantom against the ground truth. Mean ADC and reproducibility were assessed using Bland-Altman plots. RESULTS: Both MR-simulator and MR-Linac demonstrated high ADC homogeneity (FL > 87.5% - MR-simulator: 97.23 ± 0.62%, MR-Linac: 94.75 ± 0.62%, p < 0.05) in the phantom. Image quality scores revealed acceptable ratings (≥3) for capsule demarcation, image artifacts, and geometric distortion in patients. However, intra-prostatic lesions were barely discernible in b800 images for both MR-simulator (average score = 2.37 ± 1.33) and MR-Linac (average score = 2.16 ± 1.28). While MR-Linac DWI scans exhibited significantly more severe geometric distortion than MR-simulator scans (p < 0.01), most phantom measurements fell within the image in-plane resolution of 3 mm. Significant differences were noted in MR-simulator ADC (CTV: 1.20 ± 0.14 × 10-3 mm2/s (MR-simulator) vs 1.06 ± 0.10 × 10-3 mm2/s (MR-Linac); GTV: 1.05 ± 0.21 × 10-3 mm2/s vs 0.91 ± 0.16 × 10 mm2/s, all p < 0.05), with a small non-zero bias observed in the Bland-Altman analysis (CTV: 12.3%; GTV: 14.5%). CONCLUSION: The significantly larger MR-simulator ADC and the small non-zero bias hint at potential systematic differences in ADC values acquired from an MR-simulator and an MR-Linac, both at 1.5 T. Although acceptable ADC homogeneity was noted, caution is warranted in interpreting MR-Linac DWI images due to occasional severe artifacts. Further studies are essential to validate DWI and ADC as reliable imaging markers in prostate cancer MRgRT.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Próstata , Neoplasias da Próstata , Radioterapia Guiada por Imagem , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Imagem de Difusão por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Idoso , Radioterapia Guiada por Imagem/métodos , Próstata/diagnóstico por imagem , Pessoa de Meia-Idade , Razão Sinal-Ruído , Artefatos , Processamento de Imagem Assistida por Computador/métodos
2.
World J Urol ; 42(1): 97, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393414

RESUMO

BACKGROUND AND PURPOSE: This prospective study aimed to investigate adaptive magnetic resonance (MR)-guided stereotactic body radiation therapy (MRgSBRT) with rectal spacer for localized prostate cancer (PC) and report 1-year clinical outcomes. MATERIALS AND METHODS: Thirty-four consecutive patients with low- to high-risk localized PC that underwent 5-fraction adaptive MRgSBRT with rectal spacer were enrolled. The dosimetric comparison was performed on a risk- and age-matched cohort treated with MRgSBRT but without a spacer at a similar timepoint. Clinician-reported outcomes were based on Common Terminology Criteria for Adverse Events. Patient-reported outcomes were based on the Expanded Prostate Cancer Index Composite (EPIC) questionnaire at baseline, acute (1-3 months), subacute (4-12 months), and late (> 12 months) phases. RESULTS: The median follow-up was 390 days (range 28-823) and the median age was 70 years (range 58-82). One patient experienced rectal bleeding soon after spacer insertion that subsided before MRgSBRT. The median distance between the midline of the prostate midgland and the rectum after spacer insertion measured 7.8 mm (range 2.6-15.3), and the median length of the spacer was 45.9 mm (range 16.8-62.9) based on T2-weighted MR imaging. The use of spacer resulted in significant improvements in target coverage (V100% > 95% = 98.6% [range 93.4-99.8] for spacer vs. 97.8% [range 69.6-99.7] for non-spacer) and rectal sparing (V95% < 3 cc = 0.7 cc [range 0-4.6] for spacer vs. 4.9 cc [range 0-12.5] for non-spacer). Nine patients (26.5%) experienced grade 1 gastrointestinal toxicities, and no grade ≥ 2 toxicities were observed. During the 1-year follow-up period, EPIC scores for the bowel domain remained stable and were the highest among all other domains. CONCLUSIONS: MRgSBRT with rectal spacer for localized PC showed exceptional tolerability with minimal gastrointestinal toxicities and satisfactory patient-reported outcomes. Improvements in dosimetry, rectal sparing, and target coverage were achieved with a rectal spacer. Randomized trials are warranted for further validation.


Assuntos
Neoplasias da Próstata , Reto , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Prospectivos , Dosagem Radioterapêutica , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
3.
Med Phys ; 51(2): 1244-1262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37665783

RESUMO

BACKGROUND: The use of synthetic computed tomography (CT) for radiotherapy treatment planning has received considerable attention because of the absence of ionizing radiation and close spatial correspondence to source magnetic resonance (MR) images, which have excellent tissue contrast. However, in an MR-only environment, little effort has been made to examine the quality of synthetic CT images without using the original CT images. PURPOSE: To estimate synthetic CT quality without referring to original CT images, this study established the relationship between synthetic CT uncertainty and Bayesian uncertainty, and proposed a new Bayesian deep network for generating synthetic CT images and estimating synthetic CT uncertainty for MR-only radiotherapy treatment planning. METHODS AND MATERIALS: A novel deep Bayesian network was formulated using probabilistic network weights. Two mathematical expressions were proposed to quantify the Bayesian uncertainty of the network and synthetic CT uncertainty, which was closely related to the mean absolute error (MAE) in Hounsfield Unit (HU) of synthetic CT. These uncertainties were examined to demonstrate the accuracy of representing the synthetic CT uncertainty using a Bayesian counterpart. We developed a hybrid Bayesian architecture and a new data normalization scheme, enabling the Bayesian network to generate both accurate synthetic CT and reliable uncertainty information when probabilistic weights were applied. The proposed method was evaluated in 59 patients (13/12/32/2 for training/validation/testing/uncertainty visualization) diagnosed with prostate cancer, who underwent same-day pelvic CT- and MR-acquisitions. To assess the relationship between Bayesian and synthetic CT uncertainties, linear and non-linear correlation coefficients were calculated on per-voxel, per-tissue, and per-patient bases. For accessing the accuracy of the CT number and dosimetric accuracy, the proposed method was compared with a commercially available atlas-based method (MRCAT) and a U-Net conditional-generative adversarial network (UcGAN). RESULTS: The proposed model exhibited 44.33 MAE, outperforming UcGAN 52.51 and MRCAT 54.87. The gamma rate (2%/2 mm dose difference/distance to agreement) of the proposed model was 98.68%, comparable to that of UcGAN (98.60%) and MRCAT (98.56%). The per-patient and per-tissue linear correlation coefficients between the Bayesian and synthetic CT uncertainties ranged from 0.53 to 0.83, implying a moderate to strong linear correlation. Per-voxel correlation coefficients varied from -0.13 to 0.67 depending on the regions-of-interest evaluated, indicating tissue-dependent correlation. The R2 value for estimating MAE solely using Bayesian uncertainty was 0.98, suggesting that the uncertainty of the proposed model was an ideal candidate for predicting synthetic CT error, without referring to the original CT. CONCLUSION: This study established a relationship between the Bayesian model uncertainty and synthetic CT uncertainty. A novel Bayesian deep network was proposed to generate a synthetic CT and estimate its uncertainty. Various metrics were used to thoroughly examine the relationship between the uncertainties of the proposed Bayesian model and the generated synthetic CT. Compared with existing approaches, the proposed model showed comparable CT number and dosimetric accuracies. The experiments showed that the proposed Bayesian model was capable of producing accurate synthetic CT, and was an effective indicator of the uncertainty and error associated with synthetic CT in MR-only workflows.


Assuntos
Radioterapia de Intensidade Modulada , Masculino , Humanos , Teorema de Bayes , Incerteza , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
4.
J Appl Clin Med Phys ; 25(4): e14251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38140755

RESUMO

BACKGROUND AND PURPOSE: TomoEDGE is an advanced technology for TomoTherapy treatment delivery by introducing a sliding-window dynamic jaw motion. The front and back jaws move independently at the start and end of a target volume along the longitudinal couch direction to reduce the undesired dose to the normal tissues. The accuracy of field width is essential to treatment delivery in this regard. The purpose of this work was to analyze the performance of dynamic jaws on helical tomotherapy and investigate the relationship with energy variation. METHODS: The Tomotherapy-Quality-Assurance (TQA) Dynamic Field Width procedure was performed monthly across three tomotherapy machines. All field widths were analyzed, especially the FWHM of the 10 mm field width. Field width measurements were compared with the ratio of Percentage Depth Dose at 20 and 10 cm to render the value of correlation. Changes in beam FWHM and energy were further discussed. Two-year data were collected for this purpose. RESULTS: On average, measured field widths in each unit agreed within 1% tolerance recommendation stated. The average absolute difference between reference and measured FWs in each unit was approximately 0.07 mm. An increase of 1.5% in the FW of the 10 mm nominal beam width was correlated with a 1% increase in PDD20,10 ratio, implying a positive correlation between the two factors (p < 0.002). CONCLUSIONS: A positive correlation between nominal 10 mm FW and PDD20,10 was observed. In the case that the PDD20,10 marginally passes the QA tests, users are recommended to consider further verification on Dynamic Jaws to ensure the smallest field width to be within tolerance, which is essential to maintain effective treatment in TomoEDGE system. Since the regression of this study was a single-factor model, other confounding factors such as the focal spot size of linear accelerator should also be considered when evaluating the machine status.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Movimento (Física)
5.
Med Phys ; 50(6): 3623-3636, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36975016

RESUMO

MR-guided radiotherapy (MRgRT) is one of the most significant advances in radiotherapy in recent years. The hybrid systems were designed to visualize patient anatomical and physiological changes during the course of radiotherapy, enabling more precise treatment. However, before MR-linacs reach their full potential in delivering safe and accurate treatments to patients, the radiotherapy team must understand how a magnetic field alters the dosimetric properties of the radiation beam and its potential impact on treatment quality and clinical outcomes. This review aims to provide an in-depth description of the magnetic field induced dose effects for the two widely available systems, the 0.35 T and the 1.5 T MR-linacs. In MR-linac treatments, the primary photon beam passes through MR components that never exist in conventional linacs, which alter both in-field and out-of-field doses. More importantly, the interplay between the always-on magnetic field and the secondary electrons is not negligible. This interplay affects dose deposition in the patient, resulting in reduced in-field skin dose due to purged-out contaminant electrons, shortened build-up distance and a shifted crossline profile owing to asymmetric dose kernel. Especially two effects, namely, electron return effect (ERE) and electron stream effect (ESE), are not seen in conventional radiotherapy. This review also summarizes the clinical observations on the site-specific treatments influenced mostly by the magnetic field. In MR-linac treatment, the head and neck region is one of the most challenging sites as ERE occurs at low and high density tissue interfaces and around air cavities, generating hot and cold spots. In breast cancer treatment, consideration should be given to the increased in-field skin dose induced by ERE and the increased out-of-field dose caused by ESE for regions such as the ears, chin, and neck. In lung cancer treatments, tissue inhomogeneity combined with ERE will exacerbate target dose heterogeneity and increase or decrease interface dose. Lastly, treatment in the abdomen and pelvic region will be affected by the presence of gas pockets near the target. The review provides practical recommendations to mitigate these effects.


Assuntos
Campos Magnéticos , Radiometria , Humanos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Pelve , Pulmão , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Dosagem Radioterapêutica
6.
Med Phys ; 50(2): 958-969, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36251320

RESUMO

PURPOSE: Determination of reliable change of radiomics feature over time is essential and vital in delta-radiomics, but has not yet been rigorously examined. This study attempts to propose a methodological approach using reliable change index (RCI), a statistical metric to determine the reliability of quantitative biomarker changes by accounting for the baseline measurement standard error, in delta-radiomics. The use of RCI was demonstrated with the MRI data acquired from a group of prostate cancer (PCa) patients treated by 1.5 T MRI-guided radiotherapy (MRgRT). METHODS: Fifty consecutive PCa patients who underwent five-fractionated MRgRT were retrospectively included, and 1023 radiomics features were extracted from the clinical target volume (CTV) and planning target volume (PTV). The two MRI datasets acquired at the first fraction (MRI11 and MRI21) were used to calculate the baseline feature reliability against image acquisition using intraclass correlation coefficient (ICC). The RCI was constructed based on the baseline feature measurement standard deviation, ICC, and feature value differences at two time points between the fifth (MRI51) and the first fraction MRI (MRI11). The reliable change of features was determined in each patient only if the calculated RCI was over 1.96 or smaller than -1.96. The feature changes between MRI51 and MRI11 were correlated to two patient-reported quality-of-life clinical endpoints of urinary domain summary score (UDSS) and bowel domain summary score (BDSS) in 35 patients using the Spearman correlation test. Only the significant correlations between a feature that was reliably changed in ≥7 patients (20%) by RCI and an endpoint were considered as true significant correlations. RESULTS: The 352 (34.4%) and 386 (37.7%) features among all 1023 features were determined by RCI to be reliably changed in more than five (10%) patients in the CTV and PTV, respectively. Nineteen features were found reliably changed in the CTV and 31 features in the PTV, respectively, in 10 (20%) or more patients. These features were not necessarily associated with significantly different longitudinal feature values (group p-value < 0.05). Most reliably changed features in more than 10 patients had excellent or good baseline test-retest reliability ICC, while none showed poor reliability. The RCI method ruled out the features to be reliably changed when substantial feature measurement bias was presented. After applying the RCI criterion, only four and five true significant correlations were confirmed with UDSS and BDSS in the CTV, respectively, with low true significance correlation rates of 10.8% (4/37) and 17.9% (5/28). No true significant correlations were found in the PTV. CONCLUSIONS: The RCI method was proposed for delta-radiomics and demonstrated using PCa MRgRT data. The RCI has advantages over some other statistical metrics commonly used in the previous delta-radiomics studies, and is useful to reliably identify the longitudinal radiomics feature change on an individual basis. This proposed RCI method should be helpful for the development of essential feature selection methodology in delta-radiomics.


Assuntos
Imageamento por Ressonância Magnética , Masculino , Humanos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos
7.
J Cancer Res Clin Oncol ; 149(2): 841-850, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35199189

RESUMO

PURPOSE: To analyze and characterize the online plan adaptation of 1.5T magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) of prostate cancer (PC). METHODS: PC patients (n = 107) who received adaptive 1.5 Tesla MRgSBRT were included. Online plan adaptation was implemented by either the adapt-to-position (ATP) or adapt-to-shape (ATS) methods. Patients were assigned to the ATS group if they underwent ≥ 1 ATS fraction (n = 51); the remainder were assigned to the ATP group (n = 56). The online plan adaptation records of 535 (107 × 5) fractions were retrospectively reviewed. Rationales for ATS decision-making were determined and analyzed using predefined criteria. Statistics of ATS fractions were summarized. Associations of patient characteristics and clinical factors with ATS utilization were investigated. RESULTS: There were 87 (16.3%) ATS fractions and 448 ATP fractions (83.7%). The numbers of ATS adoptions in fractions 1-5 were 29 (29/107, 27.1%), 18 (16.8%), 15 (14.0%), 16 (15.0%), and 9 (8.4%), respectively, with significant differences in adoption frequency between fractions (p = 0.007). Other baseline patient characteristics and clinical factors were not significantly associated with ATS classification (all p > 0.05). Underlying criteria for the determination of ATS implementation comprised anatomical changes (77 fractions in 50 patients) and discrete multiple targets (15 fractions in 3 patients). No ATS utilization was determined using dosimetric or online quality assurance criteria. CONCLUSIONS: This study contributes to facilitating the establishment of a standardized protocol for online MR-guided adaptive radiotherapy in PC.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Radioterapia Guiada por Imagem , Masculino , Humanos , Radiocirurgia/métodos , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Espectroscopia de Ressonância Magnética , Trifosfato de Adenosina , Dosagem Radioterapêutica , Imageamento por Ressonância Magnética/métodos
8.
Magn Reson Med ; 89(5): 2088-2099, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36572990

RESUMO

PURPOSE: To investigate the potential value of MRI radiomics obtained from a 1.5 T MRI-guided linear accelerator (MR-LINAC) for D'Amico high-risk prostate cancer (PC) classification in MR-guided radiotherapy (MRgRT). METHODS: One hundred seventy-six consecutive PC patients underwent 1.5 T MRgRT treatment were retrospectively enrolled. Each patient received one or two pretreatment T2 -weighted MRI scans on a 1.5 T MR-LINAC. The endpoint was to differentiate high-risk from low/intermediate-risk PC based on D'Amico criteria using MRI-radiomics. Totally 1023 features were extracted from clinical target volume (CTV) and planning target volume (PTV). Intraclass correlation coefficient of scan-rescan repeatability, feature correlation, and recursive feature elimination were used for feature dimension reduction. Least absolute shrinkage and selection operator regression was employed for model construction. Receiver operating characteristic area under the curve (AUC) analysis was used for model performance assessment in both training and testing data. RESULTS: One hundred and eleven patients fulfilled all criteria were finally included: 76 for training and 35 for testing. The constructed MRI-radiomics models extracted from CTV and PTV achieved the AUC of 0.812 and 0.867 in the training data, without significant difference (P = 0.083). The model performances remained in the testing. The sensitivity, specificity, and accuracy were 85.71%, 64.29%, and 77.14% for the PTV-based model; and 71.43%, 71.43%, and 71.43% for the CTV-based model. The corresponding AUCs were 0.718 and 0.750 (P = 0.091) for CTV- and PTV-based models. CONCLUSION: MRI-radiomics obtained from a 1.5 T MR-LINAC showed promising results in D'Amico high-risk PC stratification, potentially helpful for the future PC MRgRT. Prospective studies with larger sample sizes and external validation are warranted for further verification.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Projetos Piloto , Estudos Retrospectivos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
9.
Biomed Phys Eng Express ; 8(6)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36206695

RESUMO

Background and purpose.The introduction of online motion synchronizing system on helical tomotherapy paves way for robust motion tracking. A recent upgrade launches modifications on both hardware and software of the kV tracking system. An evaluation on the kV subsystems, prior (Version1) and post upgrade (Version2), was performed to compare tracking accuracy by means of fiducial tracking error and resulted root-mean-square (RMS). Impacts influenced by various patient-specific breathing pattern regularities and target movements were also investigated to refine motion tracking error estimations upon future selection of possible candidates.Materials and methods.Respiratory patterns from twenty-five lung cases were imported individually into a commercial dynamic platform model. Situating a phantom implanted with gold fiducial markers on the platform, superior-inferior (SI) movements of corresponding targets were simulated. Each case was delivered via an identical treatment plan in Version1 and was repeated in Version2. Motion tracking accuracy, by means of discrepancies between subsystem predicted model and raw data motion recorded in patient CT simulation, was analyzed statistically. Wilcoxon signed ranked test was employed to evaluate the difference in tracking error range between the two versions. Statistical model was fitted to inspect the dependence of internal target movement towards fiducial tracking errors.Results.A small difference of ±1 mm was exhibited in 99% of fiducial tracking errors for all cases experimented under both versions. RMS errors were all below 0.5 mm. Version2 demonstrated a greater extremity in fiducial tracking error (p = 0.04). A positive correlation was depicted between internal target amplitudes and 95% interval of fiducial tracking errors (p < 0.02). Overall, irregular respiratory patterns tended to have greater fiducial tracking errors.Conclusions.The excellent tracking performance in both kV subsystem versions offers motion compensations benefits, yet Version1 outperformed Version2 in fiducial tracking accuracy. It is noticeable that greater magnitude in internal target movement and irregular breathing patterns yield greater tracking error.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Marcadores Fiduciais , Respiração , Movimento (Física) , Movimento
10.
Phys Eng Sci Med ; 45(3): 915-924, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35925545

RESUMO

A helical fan-beam kilovoltage computed tomography (kVCT) was recently introduced into Tomotherapy units. This study aims to share the initial experience of kVCT in clinical workflow, compare its performance with that of the existing megavoltage computed tomography (MVCT), and explore its potential in adaptive planning. We retrospectively enrolled 23 patients who underwent both MVCT and kVCT scans. The clinical performance data regarding image acquisition time, nominal dose length product (DLP), registration time and registration corrections were extracted and compared. Image quality was scored by six experienced radiation therapists and quantified based on phantom measurements. CT number stability and the implementation of adaptive radiotherapy were dosimetrically evaluated by performing the dose recalculation on kVCT. Compared to MVCT, kVCT significantly reduced DLP (except the highest kVp protocol), image acquisition and registration time. KVCT obtained higher scores than MVCT on all criteria except artifacts. Phantom measurements also revealed a better image performance characterization of kVCT except for image uniformity. The CT number variation could lead to a dose difference of 0.5% for D95% of target and Dmean of organ-at-risk. For the treatment planning with kVCT, a systematic dose difference (> 1%) in PTV dose metrics was observed at regions with large longitudinal density discontinuities compared to the reference plans. The new kVCT imaging provides enhanced soft-tissue visualization. The improved efficiency with kVCT-guided treatment will allow more patients to be treated each day. In most cases, the dose calculation accuracy of kVCT images is acceptable except for regions with severe artifacts.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Imagens de Fantasmas , Estudos Retrospectivos , Tomografia Computadorizada Espiral/métodos , Tomografia Computadorizada por Raios X/métodos
11.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884553

RESUMO

Background: Conventionally fractionated whole-pelvic nodal radiotherapy (WPRT) improves clinical outcome compared to prostate-only RT in high-risk prostate cancer (HR-PC). MR-guided stereotactic body radiotherapy (MRgSBRT) with concomitant WPRT represents a novel radiotherapy (RT) paradigm for HR-PC, potentially improving online image guidance and clinical outcomes. This study aims to report the preliminary clinical experiences and treatment outcome of 1.5 Tesla adaptive MRgSBRT with concomitant WPRT in HR-PC patients. Materials and methods: Forty-two consecutive HR-PC patients (72.5 ± 6.8 years) were prospectively enrolled, treated by online adaptive MRgSBRT (8 Gy(prostate)/5 Gy(WPRT) × 5 fractions) combined with androgen deprivation therapy (ADT) and followed up (median: 251 days, range: 20−609 days). Clinical outcomes were measured by gastrointestinal (GI) and genitourinary (GU) toxicities according to the Common Terminology Criteria for Adverse Events (CTCAE) Scale v. 5.0, patient-reported quality of life (QoL) with EPIC (Expanded Prostate Cancer Index Composite) questionnaire, and prostate-specific antigen (PSA) responses. Results: All MRgSBRT fractions achieved planning objectives and dose specifications of the targets and organs at risk, and they were successfully delivered. The maximum cumulative acute GI/GU grade 1 and 2 toxicity rates were 19.0%/81.0% and 2.4%/7.1%, respectively. The subacute (>30 days) GI/GU grade 1 and 2 toxicity rates were 21.4%/64.3% and 2.4%/2.4%, respectively. No grade 3 toxicities were reported. QoL showed insignificant changes in urinary, bowel, sexual, and hormonal domain scores during the follow-up period. All patients had early post-MRgSBRT biochemical responses, while biochemical recurrence (PSA nadir + 2 ng/mL) occurred in one patient at month 18. Conclusions: To our knowledge, this is the first prospective study that showed the clinical outcomes of MRgSBRT with concomitant WPRT in HR-PC patients. The early results suggested favorable treatment-related toxicities and encouraging patient-reported QoLs, but long-term follow-up is needed to confirm our early results.

12.
J Appl Clin Med Phys ; 23(6): e13600, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35446474

RESUMO

PURPOSE: The Synchrony tracking system of Radixact is capable of real-time tumor tracking by building a correlation model between external light-emitting diodes on the patient's chest and an internal marker. A phase shift between the chest wall and a lung tumor has been reported. Hence, this study focused on evaluating the accuracy of the tracking system, especially under a patient-specific breathing pattern with respiratory phase shifts. METHODS: A phantom containing fiducial markers was placed on a moving platform. The intrinsic delivery accuracy was verified with a patient-specific breathing pattern. Three patient-specific breathing patterns were then implemented, for which phase shifts, φ, were introduced. Phase shifts with +0.3 s and +1 s were tested for dosimetric aspects, whereas ±0.3, ±0.6, and ±0.8 s shifts were used for tracking accuracy. The resultant dose distributions were analyzed by γ comparison. Dose profiles in the superior-inferior and lateral directions were compared. Logfiles of the tracking information were extracted from the system and compared with the input breathing pattern. The root mean square (RMS) difference was used to quantify the consistency. RESULTS: When the φ value was as large as 1 s, a severe inconsistency was observed. The target was significantly underdosed, down to 89% of the originally planned dose. γ analysis revealed that the failed portion was concentrated in the target region. The RMS of the tracking difference was close to 1 mm when φ was ±0.3 s and approximately 4 mm when φ was ±0.8 s. Tracking errors increased with an increase in the degree of phase shifts. CONCLUSION: Phase shifts between the patient chest wall and the internal target may hamper treatment delivery and jeopardize treatment using Synchrony Tracking. Hence, a larger planning target volume (PTV) may be necessary if a large phase shift is observed in a patient, especially when an external surrogate shows a lag in motion when compared with the tumor.


Assuntos
Neoplasias Pulmonares , Radiometria , Humanos , Neoplasias Pulmonares/radioterapia , Movimento (Física) , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Respiração
13.
Vis Comput Ind Biomed Art ; 5(1): 10, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35359245

RESUMO

Radiomics has increasingly been investigated as a potential biomarker in quantitative imaging to facilitate personalized diagnosis and treatment of head and neck cancer (HNC), a group of malignancies associated with high heterogeneity. However, the feature reliability of radiomics is a major obstacle to its broad validity and generality in application to the highly heterogeneous head and neck (HN) tissues. In particular, feature repeatability of radiomics in magnetic resonance imaging (MRI) acquisition, which is considered a crucial confounding factor of radiomics feature reliability, is still sparsely investigated. This study prospectively investigated the acquisition repeatability of 93 MRI radiomics features in ten HN tissues of 15 healthy volunteers, aiming for potential magnetic resonance-guided radiotherapy (MRgRT) treatment of HNC. Each subject underwent four MRI acquisitions with MRgRT treatment position and immobilization using two pulse sequences of 3D T1-weighed turbo spin-echo and 3D T2-weighed turbo spin-echo on a 1.5 T MRI simulator. The repeatability of radiomics feature acquisition was evaluated in terms of the intraclass correlation coefficient (ICC), whereas within-subject acquisition variability was evaluated in terms of the coefficient of variation (CV). The results showed that MRI radiomics features exhibited heterogeneous acquisition variability and uncertainty dependent on feature types, tissues, and pulse sequences. Only a small fraction of features showed excellent acquisition repeatability (ICC > 0.9) and low within-subject variability. Multiple MRI scans improved the accuracy and confidence of the identification of reliable features concerning MRI acquisition compared to simple test-retest repeated scans. This study contributes to the literature on the reliability of radiomics features with respect to MRI acquisition and the selection of reliable radiomics features for use in modeling in future HNC MRgRT applications.

14.
Quant Imaging Med Surg ; 12(2): 1585-1607, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35111651

RESUMO

Magnetic resonance guided radiotherapy (MRgRT), enabled by the clinical introduction of the integrated MRI and linear accelerator (MR-LINAC), is a novel technique for prostate cancer (PCa) treatment, promising to further improve clinical outcome and reduce toxicity. The role of prostate MRI has been greatly expanded from the traditional PCa diagnosis to also PCa screening, treatment and surveillance. Diagnostic prostate MRI has been relatively familiar in the community, particularly with the development of Prostate Imaging - Reporting and Data System (PI-RADS). But, on the other hand, the use of MRI in the emerging clinical practice of PCa MRgRT, which is substantially different from that in PCa diagnosis, has been so far sparsely presented in the medical literature. This review attempts to give a comprehensive overview of MRI acquisition techniques currently used in the clinical workflows of PCa MRgRT, from treatment planning to online treatment guidance, in order to promote MRI practice and research for PCa MRgRT. In particular, the major differences in the MRI acquisition of PCa MRgRT from that of diagnostic prostate MRI are demonstrated and explained. Limitations in the current MRI acquisition for PCa MRgRT are analyzed. The future developments of MRI in the PCa MRgRT are also discussed.

15.
Asia Pac J Clin Oncol ; 18(5): e369-e377, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35073460

RESUMO

PURPOSE: To assess the image quality and delineation value of compressed sensing (CS)-accelerated 3D T2W turbo-spin-echo (TSE) sequence for radiotherapy treatment planning (RTP) of prostate cancer. METHODS: An optimized CS-accelerated 3D-T2W-TSE was determined by volunteer imaging and applied for clinical RTP-MRI. This optimized CS-accelerated planning MRI and the standardized adaptive MRI acquired at 1.5T were retrospectively analyzed in 26 prostate cancer patients who were to receive MR-guided radiotherapy. Signal-to-noise ratio (SNR) and relative contrast ratio (CR) were quantitatively assessed. Image quality and artifacts were qualitatively assessed using a five-point scale rating. Delineation value in the prostate and organs-at-risk (OARs) was also rated and compared. Wilcoxon signed-rank test was used for SNR, relative CR, and rating comparisons. The interobserver rating agreement was evaluated by percent agreement. RESULTS: Significantly better SNR and relative CR in the prostate, rectum, bowel, penis, and penile bulb, while significantly worse in the cauda equina, were observed on the planning MRI. Significantly better ratings of image quality and artifacts were given to the planning MRI, with much less Gibbs ringing and reconstruction artifacts. Significantly better delineation value rating was achieved on the planning MRI in the prostate, seminal vesicle, rectum, penis, penile bulb, and testes, while significantly worse in the cauda equina. A strong to almost perfect interobserver rating agreement was obtained. CONCLUSION: This study suggested that CS acceleration is applicable and valuable in prostate RTP-MRI. CS-accelerated 3D-T2W-TSE images should benefit the delineation of prostate and many OARs.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Aceleração , Artefatos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Estudos Retrospectivos
16.
J Cancer Res Clin Oncol ; 148(7): 1749-1759, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34363123

RESUMO

PURPOSE: Performance of 3D-T1W-TSE has been proven superior to 3D-MP-GRE at 3 T on brain metastases (BM) contrast-enhanced (CE) MRI. However, its performance at 1.5 T is largely unknown and sparsely reported. This study aims to assess image quality, lesion detectability and conspicuity of 1.5 T 3D-T1W-TSE on planning MRI of frameless BM radiotherapy. METHODS: 94 BM patients to be treated by frameless brain radiotherapy were scanned using 3D-T1W-TSE with immobilization on multi-vendor 1.5 T MRI-simulators. BMs were jointly diagnosed by 4 reviewers. Enhanced lesion conspicuity was quantitatively assessed by calculating contrast ratio (CR) and contrast-to-noise ratio (CNR). Signal-to-noise ratio (SNR) reduction of white matter due to the use of flexible coil was assessed. Lesion detectability and conspicuity were compared between 1.5 T planning MRI and 3 T diagnostic MRI by an oncologist and a radiologist in 10 patients. RESULTS: 497 BMs were jointly diagnosed. The CR and CNR were 75.2 ± 39.9% and 14.2 ± 8.1, respectively. SNR reduced considerably from 31.7 ± 8.3 to 21.9 ± 5.4 with the longer distance to coils. 3 T diagnostic MRI and 1.5 T planning MRI yielded exactly the same detection of 84 BMs. Qualitatively, lesion conspicuity at 1.5 T was not inferior to that at 3 T. Quantitatively, lower brain SNR and lesion CNR were found at 1.5 T, while lesion CR at 1.5 T was highly comparable to that at 3 T. CONCLUSION: 1.5 T 3D-T1W-TSE planning MRI of frameless BM radiotherapy was comprehensively assessed. Highly comparable BM detectability and conspicuity were achieved by 1.5 T planning MRI compared to 3 T diagnostic MRI. 1.5 T 3D-T1W-TSE should be valuable for frameless brain radiotherapy planning.


Assuntos
Neoplasias Encefálicas , Radioterapia (Especialidade) , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos
17.
Pract Radiat Oncol ; 12(1): e56-e61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34520872

RESUMO

Magnetic resonance-guided radiation therapy is reported for treating patients with an insertable cardiac monitor and implantable cardiac pacemakers. All treatments were delivered using a 1.5 T MR-Linac. Among the 4 patients, 2 were treated with stereotactic body radiation therapy at a dose of 40 Gy in 5 fractions. A clinical safety protocol was developed to address the decision-making and patient selection, as well as the clarified responsibilities of different parties for management of patients with cardiovascular implantable electronic devices. Dose estimation based on out-of-field dose data are necessary for cardiovascular implantable electronic devices located outside the treatment fields.


Assuntos
Desfibriladores Implantáveis , Marca-Passo Artificial , Eletrônica , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Aceleradores de Partículas
18.
Rep Pract Oncol Radiother ; 27(6): 1106-1113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36632302

RESUMO

Background: The objective was to investigate the change in segmentation error of Radixact® Synchrony® lung treatment after its kV imaging system was upgraded from Generation 1 to Generation 2 in the ClearRT™ installation. Materials and methods: Radixact® Lung Synchrony® plans were created for the Model 18023 Xsight® Lung Tracking "XLT" Phantom combined with different lung target inserts with densities of 0.280, 0.500, 0.943 and 1.093 g/cc. After Radixact® Synchrony® treatment delivery using the Generation 1 and Generation 2 kV systems according to each plan, the tracking performance of the two kV systems on each density insert was compared by calculating the root mean square (RMS) error (δRMS) between the Synchrony-predicted motion in the log file and the known phantom motion and by calculating δ95%, the maximum error within a 95% probability threshold. Results: The δRMS and δ95% of Radixact® Synchrony® treatment for Gen1 kV systems deteriorated as the density of the target insert decreased, from 1.673 ± 0.064 mm and 3.049 ± 0.089 mm, respectively, for the 1.093 g/cc insert to 8.355 ± 5.873 mm and 15.297 ± 10.470 mm, respectively, for the 0.280 g/cc insert. In contrast, no such trend was observed in the δRMS or δ95% of Synchrony® treatment using the Gen2 kV system. The δRMS and δ95%, respectively, fluctuated slightly from 1.586 to 1.687 mm and from 2.874 to 2.971 mm when different target inserts were tracked by the Gen2 kV system. Conclusion: With improved image contrast in kV radiographs, the Gen2 kV imaging system can enhance the ability to track targets accurately in Radixact® Lung Synchrony® treatment and reduce the segmentation error. Our study showed that lung targets with density values as low as 0.280 cc/g could be tracked correctly in Synchrony treatment with the Gen2 kV imaging system.

19.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638348

RESUMO

BACKGROUND: Magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) offers the potential for achieving better prostate cancer (PC) treatment outcomes. This study reports the preliminary clinical results of 1.5T MRgSBRT in localized PC, based on both clinician-reported outcome measurement (CROM) and patient-reported outcome measurement (PROM). METHODS: Fifty-one consecutive localized PC patients were prospectively enrolled with a median follow-up of 199 days. MRgSBRT was delivered in five fractions of 7.25-8 Gy with daily online adaptation. Clinician-reported gastrointestinal (GI) and genitourinary (GU) adverse events based on the Common Terminology Criteria for Adverse Events (CTCAE) Scale v. 5.0 were assessed. The Expanded Prostate Cancer Index Composite Questionnaire was collected at baseline, 1 month, and every 3 months thereafter. Serial prostate-specific antigen measurements were longitudinally recorded. RESULTS: The maximum cumulative clinician-reported grade ≥ 2 acute GU and GI toxicities were 11.8% (6/51) and 2.0% (1/51), respectively, while grade ≥ 2 subacute GU and GI toxicities were 2.3% (1/43) each. Patient-reported urinary, bowel, and hormonal domain summary scores were reduced at 1 month, then gradually returned to baseline levels, with the exception of the sexual domain. Domain-specific subscale scores showed similar longitudinal changes. All patients had early post-MRgSBRT biochemical responses. CONCLUSIONS: The finding of low toxicity supports the accumulation of clinical evidence for 1.5T MRgSBRT in localized PC.

20.
Phys Med Biol ; 66(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34700308

RESUMO

This study aims to quantify the relative contributions of phantom scatter, collimator scatter and head leakage to the out-of-field doses (OFDs) of both static fields and clinical intensity-modulated radiation therapy (IMRT) treatments in a 1.5 T MR-Linac. The OFDs of static fields were measured at increasing distances from the field edge in an MR-conditional water phantom. Inline scans at depths of dmax (14 mm), 50 and 100 mm were performed for static fields of 5 × 5, 10 × 10 and 15 × 15 cm2under three different conditions: full scatter, with phantom scatter prevented, and head leakage only. Crossline scans at isocenter and offset positions were performed in full scatter condition. EBT3 radiochromic films were placed at 100 mm depth of solid water phantom to measure the OFD of clinical IMRT plans. All water tank data were normalized to Dmax of a 10 × 10 cm2field and the film results were presented as a fraction of the target mean dose.The OFD in the inline direction varied from 3.5% (15 × 15 cm2, 100 mm depth, 50 mm distance) to 0.014% (5 × 5 cm2, dmax, 400 mm distance). For all static fields, the collimator scatter was higher than the phantom scatter and head leakage at a distance of 100-400 mm. Head leakage remained the smallest among the three components, except at long distances (>375 mm) with small field size. Compared to the inline scans, the crossline scans at the isocenter showed higher doses at distances longer than 80 mm. All crossline profiles at longitudinal offset positions showed a cone shape with laterally shifted maxima. The OFD of IMRT deliveries varied with different target size. For prostate stereotactic body radiation therapy (SBRT) treatment, the OFD decreased from 2% to 0.03% at a distance of 50-500 mm. The OFDs have been measured for a 1.5 T MR-Linac. The presented dosimetric data are valuable for radiation safety assessments on patients treated with the MR-Linac, such as evaluating carcinogenic risk and radiation exposure to cardiac implantable electronic devices.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA