Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 63(4): 742-756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270247

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) significantly contributes to drug resistance of cancer cells, and Nrf2 inhibitors have been vigorously pursued. Repurposing of existing drugs, especially anticancer drugs, is a straightforward and promising strategy to find clinically available Nrf2 inhibitors and effective drug combinations. Topoisomerase inhibitors SN-38 (an active metabolite of irinotecan), topotecan, mitoxantrone, and epirubicin were found to significantly suppress Nrf2 transcriptional activity in cancer cells. SN-38, the most potent one among them, significantly inhibited the transcription of Nrf2, as indicated by decreased mRNA level and binding of RNA polymerase II to NFE2L2 gene, while no impact on Nrf2 protein or mRNA degradation was observed. SN-38 synergized with Nrf2-sensitive anticancer drugs such as mitomycin C in killing colorectal cancer cells, and irinotecan and mitomycin C synergistically inhibited the growth of SW480 xenografts in nude mice. Our study identified SN-38 and three other topoisomerase inhibitors as Nrf2 inhibitors, revealed the Nrf2-inhibitory mechanism of SN-38, and indicate that clinically feasible drug combinations could be designed based on their interactions with Nrf2 signaling.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Humanos , Irinotecano/farmacologia , Camptotecina/farmacologia , Mitomicina/farmacologia , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Inibidores da Topoisomerase/farmacologia , Combinação de Medicamentos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
2.
Biomed Pharmacother ; 167: 115454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688987

RESUMO

Increased numbers and functional overactivity of osteoclasts are the pathological basis for bone loss diseases such as osteoporosis, which are characterized by cortical bone thinning, decreased trabecular bone quantity, and reduced bone mineral density. Effective inhibition of osteoclast formation and bone resorption are important means of treating such skeletal diseases. Anemoside B4 (AB4), the main active component of Pulsatilla chinensis, possesses a wide range of anti-inflammatory and immunoregulatory effects. However, its effect and mechanism in osteoclast differentiation remain unclear. In this study, we found through tartrate-resistant acidic phosphatase (TRAcP) staining and immunofluorescence staining that AB4 inhibited the differentiation, fusion, and bone-resorption functions of osteoclasts induced by receptor activator of nuclear factor κB ligand (RANKL) in vitro. Additionally, real time PCR (RT-qPCR) and western blot analysis showed AB4 downregulated the expression of osteoclast marker genes, including Nfatc1, Fos, and Ctsk, while upregulating Nrf2 expression. AB4 (5 mg/kg) alleviated bone loss in ovariectomized mice by inhibiting osteoclast formation. Furthermore, the knockout of Nrf2 weakened the inhibitory effects of AB4 on osteoclast formation and related gene expression. In summary, the results suggest AB4 can inhibit osteoclast differentiation and function by activating Nrf2 and indicate AB4 may be a candidate drug for osteoporosis.

3.
Int Immunopharmacol ; 120: 110425, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37285681

RESUMO

Intestinal ischemia-reperfusion (I/R) injury is a common pathophysiological process in various diseases, and the disruption of the intestinal barrier composed of tight junction proteins is the initiating factor, which then leads to a large number of bacteria and endotoxins in the intestine into the bloodstream causing stress and distant organ damage. The release of inflammatory mediators and abnormal programmed death of intestinal epithelial cells are important factors of intestinal barrier damage. Succinate is an intermediate product of the tricarboxylic acid cycle with anti-inflammatory and pro-angiogenic activities, but its role in the maintenance of intestinal barrier homeostasis after I/R has not been fully elucidated. In this study, we explored the effect of succinate on intestinal ischemia-reperfusion injury and the possible mechanism of its role by flow cytometry, western blotting, real-time quantitative PCR and immunostaining. The results of pretreatment with succinate in the mouse intestinal I/R model and IEC-6 cells hypoxia-reoxygenation (H/R) model revealed a reduction in tissue damage, necroptosis and associated inflammation due to ischemia-reperfusion. Furthermore, it was found that the protective effect of succinate pretreatment may be associated with the transcriptional upregulation of the inflammatory protein KLF4 and the protective effect of intestinal barrier of succinate was diminished after inhibition of KLF4. Thus, our results suggest that succinate can exert a protective effect in intestinal ischemia-reperfusion injury through upregulation of KLF4 and also demonstrate the potential therapeutic value of succinate pretreatment in acute I/R injury of the intestine.


Assuntos
Fator 4 Semelhante a Kruppel , Traumatismo por Reperfusão , Ácido Succínico , Animais , Camundongos , Ratos , Inflamação/metabolismo , Intestinos , Necroptose , Traumatismo por Reperfusão/tratamento farmacológico , Succinatos/uso terapêutico , Fator 4 Semelhante a Kruppel/metabolismo
5.
Free Radic Biol Med ; 186: 1-16, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35490984

RESUMO

BACKGROUND: Redox imbalance is an vital mechanism for COPD. At present, insufficient researches have been conducted on the protective effect of hydrogen sulfide (H2S) on PM-induced COPD. However, whether H2S exerts the anti-injury role by blocking ferroptosis and restoring redox equilibrium remain to be investigated. METHODS: Human lung tissue samples were collected for IHC staining, and the expressions of Nrf2, ferritinophagy- and ferroptosis-related proteins were observed. The WT C57BL/6 and Nrf2 knockout mice models were established with PM(200 µg per mouse). NaHS(Exogenous H2S) was injected intraperitoneally 30 min in advance. Twenty-nine days later, mice lung tissues were evaluated by HE's and PERLS-DAB's staining. Meanwhile, inflammation and oxidative stress indicators and iron levels were assessed by corresponding ELISA kit. Related protein expressions were detected through Western blot. BEAS-2B cells with or without H2S were exposed to PM2.5 for 36 h. Cell viability, mitochondrial morphology, inflammatory cytokines, antioxidant factors, iron levels, autophagic flux and the levels of ROS, LIP ROS, MitoROS, MMP, as well as related protein expressions were detected by specific methods, respectively. In addition, V5-Nrf2, Nrf2 siRNA, Nrf2 inhibitor ML385, PPAR-γ inhibitor GW9662, autophagy inhibitor CQ, iron chelator DFO and ferroptosis inhibitor Fer-1 were used to verify the target signaling pathways. RESULTS: We found that the expressions of LIP ROS, ROS, COX2, MDA and other oxidative factors increased, while the antioxidant markers GPX4, GSH and GSH-Px significantly decreased, as well as active iron accumulation in COPD patients, PM-exposured WT and Nrf2-KO mice models and PM2.5-mediated cell models. NaHS pretreatment markedly inhibited PM-induced emphysema and airway inflammation by alleviating ferroptotic changes in vivo and vitro. With the use of V5-Nrf2 overexpression plasmid, Nrf2 siRNA and pathway inhibitors, we found NaHS activates the expressions of Nrf2 and PPAR-γ, and inhibites ferritinophagy makers LC3B, NCOA4 and FTH1 in BEAS-2B cells. Moreover, the anti-ferroptotic effect of NaHS was further verified to be related to the activation of Nrf2 signal in MEF cells. CONCLUSION: This research suggested that H2S alleviated PM-induced emphysema and airway inflammation via restoring redox balance and inhibiting ferroptosis through regulating Nrf2-PPAR-ferritinophagy signaling pathway.


Assuntos
Enfisema , Ferroptose , Sulfeto de Hidrogênio , Enfisema Pulmonar , Animais , Antioxidantes , Humanos , Sulfeto de Hidrogênio/farmacologia , Inflamação/tratamento farmacológico , Ferro , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Material Particulado/toxicidade , Receptores Ativados por Proliferador de Peroxissomo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
6.
Ecotoxicol Environ Saf ; 235: 113440, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35344898

RESUMO

BACKGROUND: Emerging studies suggest a positive association between air pollution exposure and risk of non-alcoholic fatty liver disease (NAFLD), however, the combined effects of long-term exposure to air pollution, physical activity (PA), and risk of NAFLD is unclear. METHODS: We included 58,026 Taiwan residents who received a standard medical screening program between 2001 and 2016. Levels of fine particulate matter (PM2.5) at each participant's residential address were estimated using multiple satellite-based aerosol optical depth data combined with a chemical transport model. PA volume was calculated as hours of metabolic equivalent tasks per week (MET-h/week) based on a standard self-administered questionnaire. Incident NAFLD was defined as the first occurrence of a fatty liver index (FLI) value > 30 or a hepatic steatosis index (HSI) value > 36 in participants without NAFLD at the baseline. Time-varying Cox regression was used to evaluate the combined effects of PA and PM2.5. RESULTS: Exposure to PM2.5 was positively associated with NAFLD. A 1 µg/m3 increase in PM2.5 above 23.5 µg/m3 was associated with a hazard ratio (HR) of 1.06 (95% CI: 1.04, 1.09) and 1.05 (95% CI: 1.03, 1.07) for NAFLD identified by FLI and HSI, respectively. Performing PA was inversely associated with NAFLD. Compared with participants in high PM2.5 [≥ 27.5 µg/m3]-very low PA [< 3.75 MET-h/week] group, low PM2.5 [< 23.5 µg/m3]-very high PA [≥ 25.50 MET-h/week] group had a 57% (95% CI: 50%, 63%) and 42% (95% CI: 33%, 50%) lower risk of NAFLD defined by FLI and HSI, respectively. We found no evidence of any additive or multiplicative interaction between PA and PM2.5. CONCLUSION: Long-term PM2.5 exposure was positively associated with NAFLD, whereas performing PA was inversely associated with NAFLD. The benefits of PA on NAFLD remained stable in participants exposed to various PM2.5 levels.


Assuntos
Poluição do Ar , Hepatopatia Gordurosa não Alcoólica , Poluição do Ar/efeitos adversos , Exercício Físico , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Material Particulado , Estudos Prospectivos
7.
Nutrients ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35334933

RESUMO

This study aimed to examine the relationship between hypertension risk and protein intake in Chinese individuals. Our analysis included 7007 men and 7752 women from 9 China Health and Nutrition Survey waves (1991−2015). The main outcome was incident hypertension. Dietary intake was recorded using a combination of 3 consecutive 24-h recalls and a household food inventory survey. Energy-adjusted cumulative average intakes were analyzed, and Cox proportional hazards regression models were built. After 143,035 person-years of follow-up, 2586 and 2376 new male and female hypertension cases were identified, respectively. In multivariate-adjusted models with dietary protein intakes included as categorical variables, higher animal protein intake was associated with lower hypertension risk in women (p-trend = 0.01), whereas non-significant in men. Plant protein intake showed a significant positive correlation with hypertension risk, while non-significant for total protein. On a continuous scale, restricted cubic spline curves visually revealed L-, J-, and U-shaped associations between hypertension risk and animal-, plant-, and total-protein intakes, respectively, in both sexes (all p-nonlinearity < 0.0001). Our results suggest a beneficial association between intakes of animal, plant, and total proteins and hypertension risk at lower intake levels, and excessive intake of plant or total protein may increase the hypertension risk in the Chinese population.


Assuntos
Hipertensão , China/epidemiologia , Feminino , Humanos , Hipertensão/epidemiologia , Hipertensão/etiologia , Estudos Longitudinais , Masculino , Inquéritos Nutricionais , Fatores de Risco
9.
Artigo em Inglês | MEDLINE | ID: mdl-34909662

RESUMO

Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), together with its suppressive binding partner Kelch-like ECH-associated protein 1 (Keap1), regulates cellular antioxidant response and drug metabolism. The roles of Nrf2/Keap1 signaling in the pathology of many diseases have been extensively investigated, and small molecules targeting Nrf2/Keap1 signaling have been developed to prevent or treat diseases such as multiple sclerosis, chronic kidney disease and cancer. Notably, Nrf2 plays dual roles in cancer development and treatment. Activation of Nrf2/Keap1 signaling in cancer cells has been reported to promote cancer progression and result in therapy resistance. Since cancer patients are often suffering comorbidities of other chronic diseases, anticancer drugs could be co-administrated with other drugs and herbs. Nrf2/Keap1 signaling modulators, especially activators, are common in drugs, herbs and dietary ingredients, even they are developed for other targets. Therefore, drug-drug or herb-drug interactions due to modulation of Nrf2/Keap1 signaling should be considered in cancer therapies. Here we briefly summarize basic biochemistry and physiology functions of Nrf2/Keap1 signaling, Nrf2/Keap1 signaling modulators that cancer patients could be exposed to, and anticancer drugs that are sensitive to Nrf2/Keap1 signaling, aiming to call attention to the potential drug-drug or herb-drug interactions between anticancer drugs and these Nrf2/Keap1 signaling modulators.

11.
Fitoterapia ; 152: 104935, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34004245

RESUMO

Phytochemicals, especially flavonoids, have been widely investigated for their diversified pharmacological activities including anticancer activities. Previously we identified isoangustone A from licorice-derived compounds as a potent inducer of cell death. In the present study, the exact mechanism by which isoangustone A induced cell death was further investigated, with autophagy as an indispensible part of this process. Isoangustone A treatment activated autophagic signaling and induced a complete autophagic flux in colorectal cancer cells. Knockdown of ATG5 or pre-treatment with autophagy inhibitors significantly reversed isoangustone A-induced apoptotic signaling and loss of cell viability, suggesting autophagy plays an important role in isoangustone A-induced cell death. Isoangustone A inhibited Akt/mTOR signaling, and overexpressing of a constitutively activated Akt mildly suppressed isoangustone A-induced cell death. More importantly, isoangustone A inhibited cellular ATP level and activated AMPK, and pre-treatment with AMPK inhibitor or overexpression of dominant negative AMPKα2 significantly reversed isoangustone A-induced autophagy and cell death. Further study shows isoangustone A dose-dependently inhibited mitochondrial respiration, which could be responsible for isoangustone A-induced activation of AMPK. Finally, isoangustone A at a dosage of 10 mg/kg potently activated AMPK and autophagic signaling in and inhibited the growth of SW480 human colorectal xenograft in vivo. Taken together, induction of autophagy through activation of AMPK is an important mechanism by which isoangustone A inhibits tumor growth, and isoangustone A deserves further investigation as a promising anti-cancer agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Isoflavonas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Isoflavonas/isolamento & purificação , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Front Pharmacol ; 11: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116706

RESUMO

PURPOSE: To investigate whether hydrogen sulfide provide protective effects on atmosphere particulate matter (PM)-induced emphysema and airway inflammation and its mechanism. METHODS: Wild type C57BL/6 and Nrf2 knockout mice were exposed to PM (200 µg per mouse). Hydrogen sulfide or propargylglycine were administered by intraperitoneal injection respectively 30 min before PM exposure, mice were anesthetized 29th day after administration. Mice emphysema, airway inflammation, and oxidative stress were evaluated, the expression of NLRP3, active caspase-1, and active caspase-3 were detected. Alveolar epithelial A549 cells line were transfected with control small interfering RNA (siRNA) or Nrf2 siRNA and then incubated with or without hydrogen sulfide for 30 min before exposed to fine particulate matter for 24 h, cell viability, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling (TUNEL) assay, the secretion of interleukin (IL)-1ß, ASC speck formation, the expression level of NLRP3, active caspase-1, and active caspase-3 were measured. RESULTS: PM significantly increased mice emphysema and airway inflammation measured by mean linear intercept, alveolar destroy index and total cell, neutrophil counts, cytokines IL-6, tumor necrosis factor (TNF)-α, CXCL1, IL-1ß in bronchoalveolar lavage fluid. PM-induced mice emphysema and airway inflammation was greatly attenuated by hydrogen sulfide, while propargylglycine aggravated that. PM-induced oxidative stress was reduced by hydrogen sulfide as evaluated by 8-OHdG concentrations in lung tissues. The expression of NLRP3, active caspase-1, and active caspase-3 enhanced by PM were also downregulated by hydrogen sulfide in mice lung. The protective effect of hydrogen sulfide on emphysema, airway inflammation, inhibiting oxidative stress, NLRP3 inflammasome formation, and anti-apoptosis was inhibited by Nrf2 knockout in mice. Similarly, hydrogen sulfide attenuated the secretion of IL-1ß, NLRP3 expression, caspase-1 activation, ASC speck formation, and apoptosis caused by fine particulate matter exposure in A549 cells but not in Nrf2 silenced cells. CONCLUSION: Hydrogen sulfide played a protect role in PM-induced mice emphysema and airway inflammation by inhibiting NLRP3 inflammasome formation and apoptosis via Nrf2-dependent pathway.

13.
Med Sci Sports Exerc ; 52(8): 1719-1728, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32079911

RESUMO

INTRODUCTION: Skeletal muscle is the major producing and metabolizing site of lactic acid. A family of monocarboxylate transporter (MCT) proteins, especially MCT1 and MCT4, are involved in the lactate-pyruvate exchange and metabolism. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal coordinator of antioxidant response and energy metabolism, and has been reported to associate with the physiological functions of the skeletal muscle. METHODS: In this study, C57BL/6 J mice were administrated with an Nrf2 activator, sulforaphane (SFN) before taking incremental treadmill exercise to exhaustion under hypoxia; then the effects of SFN on exercise endurance and molecular/biochemical makers of the skeletal muscle were evaluated. RESULTS: The results indicated that SFN pretreatment enhanced the exercise endurance under hypoxia. SFN not only increased the expressions of antioxidant genes and activity of antioxidant enzymes, but also significantly increased the mRNA and protein levels of MCT1 and CD147, but not MCT4. Moreover, the expressions of LDH-B and LDH activity of converting lactate into pyruvate, as well as citrate synthase activity were significantly higher, whereas the LDH activity of converting pyruvate into lactate and blood lactate level were remarkably lower in the SFN-exercise mice than those of the phosphate-buffered saline-exercise group. Furthermore, Atf3Δzip2 (the alternatively spliced isoform of activating transcription factor-3) mRNA was increased by the exercise and further potentiated by SFN. CONCLUSION: These results show, for the first time, that SFN increases MCT1 expression in the skeletal muscle under acute hypoxic exercise and suggest that Nrf2 activation is a promising strategy to enhance exercise performance under hypoxia.


Assuntos
Hipóxia/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Condicionamento Físico Animal/métodos , Simportadores/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Basigina/metabolismo , Metabolismo Energético , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/metabolismo , Isotiocianatos , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Ácido Láctico/sangue , Masculino , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Sulfóxidos
14.
Diabetes Care ; 43(4): 776-784, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033991

RESUMO

OBJECTIVE: Excessive iron intake has been linked to diabetes risk. However, the evidence is inconsistent. This study examined the association between dietary heme and nonheme iron intake and diabetes risk in the Chinese population. RESEARCH DESIGN AND METHODS: We included 17,026 adults (8,346 men and 8,680 women) who were part of the China Health and Nutrition Survey (1991-2015) prospective cohort. Dietary intake was measured by three consecutive 24-h dietary recalls combined with a household food inventory. Diabetes cases were identified through a questionnaire. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% CIs. RESULTS: A total of 547 men and 577 women developed diabetes during 202,138 person-years of follow-up. For men, the adjusted HRs (95% CIs) for quintiles of nonheme iron intake were 1.00, 0.77 (0.58-1.02), 0.72 (0.54-0.97), 0.63 (0.46-0.85), and 0.87 (0.64-1.19) (P-nonlinearity = 0.0015). The corresponding HRs (95% CIs) for women were 1.00, 0.63 (0.48-0.84), 0.57 (0.43-0.76), 0.58 (0.43-0.77), and 0.67 (0.49-0.91) (P-nonlinearity < 0.0001). The dose-response curves for the association between nonheme iron and total iron intake and diabetes followed a reverse J shape in men and an L shape in women. No significant associations were observed between heme iron intake and diabetes risk. CONCLUSIONS: Total iron and nonheme iron intake was associated with diabetes risk, following a reverse J-shaped curve in men and an L-shaped curve in women. Sufficient intake of nonheme or total iron might be protective against diabetes, while excessive iron intake might increase the risk of diabetes among men.


Assuntos
Diabetes Mellitus/epidemiologia , Diabetes Mellitus/etiologia , Dieta , Ingestão de Alimentos/fisiologia , Heme/administração & dosagem , Ferro/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/estatística & dados numéricos , China/epidemiologia , Estudos de Coortes , Comportamento Alimentar/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Estado Nutricional , Estudos Prospectivos , Fatores de Risco , Inquéritos e Questionários
15.
J Appl Physiol (1985) ; 127(5): 1267-1277, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31487225

RESUMO

Elite endurance athletes are used to train under hypoxic/high-altitude conditions, which can elicit certain stress responses in skeletal muscle and helps to improve their physical performance. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates cellular redox homeostasis and metabolism in skeletal muscle, playing important roles in adaptation to various stresses. In this study, Nrf2 knockout (KO) and wild-type (WT) mice were preconditioned to 48 h of hypoxia exposure (11.2% oxygen), and the effects of hypoxia preconditioning (HP) on exercise capacity and exercise-induced changes of antioxidant status, energetic metabolism, and mitochondrial adaptation in skeletal muscle were evaluated. Nrf2 knockout (KO) and wild-type (WT) mice were exposed to normoxia or hypoxia for 48 h before taking incremental treadmill exercise to exhaustion under hypoxia. The skeletal muscles were collected immediately after the incremental treadmill exercise to evaluate the impacts of HP and Nrf2 on the exercise-induced changes. The results indicate the absence of Nrf2 did not affect exercise capacity, although the mRNA expression of certain muscular genes involved in antioxidant, glycogen and fatty acid catabolism was decreased in Nrf2 KO mice. However, 48-h HP enhanced exercise capacity in WT mice but not in Nrf2 KO mice, and the exercise capacity of WT mice was significantly higher than that of Nrf2 KO mice. These findings suggest HP promotes exercise capacity of mice with the participation of the Nrf2 signal in skeletal muscle.NEW & NOTEWORTHY Hypoxia preconditioning (HP) activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signal, which was involved in HP-elicited adaptation responses to hypoxia, oxidative, and metabolic stresses in skeletal muscle. On the other hand, Nrf2 deficiency abolished the enhanced exercise capacity after the 48-h HP. Our results indicate that Nrf2 plays an essential role in the exercise capacity-enhancing effect of HP, possibly by modulating muscular antioxidative responses, the mRNA expression of muscular genes involved in glycogen and fatty acid metabolism, as well as mitochondrial biogenesis, and through the cross talk with AMPK and hypoxia-inducible factor-1α signaling.


Assuntos
Antioxidantes/metabolismo , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Tolerância ao Exercício , Glicogênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo
16.
Biometals ; 32(4): 683-693, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286331

RESUMO

Prolonged exposure to gadolinium-based contrast agents has been reported to trigger nephrogenic systemic fibrosis in end stage renal disease patients. However, the exact molecular mechanisms are not fully understood, and no effective therapy is available to date. In the present study, we report that gadolinium chloride (Gd3+) concentration- and time-dependently promoted the proliferation of HEK293 human embryonic kidney cells by increasing DNA synthesis. Gd3+ treatment increased the protein levels of phosphorylated Akt and MAPKs. Inhibition of Akt and ERK by pharmacological inhibitors abolished the increased proliferation and cell cycle progression. Furthermore, Gd3+ activated EGFR signaling possibly by enhancing EGFR clustering on the cell membrane. Inhibition of EGFR by gefitinib blocked Gd3+-induced proliferation. Gd3+ exposure also upregulated the mRNA levels of TGFß-1, TGFßR1, TNFα, TIMP-1 and integrin αV, ß1 which could also be attenuated by the inhibition of Akt and ERK signaling. Our study provides new clues for the etiological role of Gd3+ in the pathogenesis of nephrogenic systemic fibrosis, and suggests the inhibition of EGFR/Akt/ERK signaling as a potential treatment strategy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Gadolínio/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Humanos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Cancers (Basel) ; 10(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562963

RESUMO

Liver-specific knockout of Nrf1 in the mouse leads to spontaneous development of non- alcoholic steatohepatitis with dyslipidemia, and then its deterioration results in hepatoma, but the underlying mechanism remains elusive to date. A similar pathological model is reconstructed here by using human Nrf1α-specific knockout cell lines. Our evidence has demonstrated that a marked increase of the inflammation marker COX2 definitely occurs in Nrf1α-/- cells. Loss of Nrf1α leads to hyperactivation of Nrf2, which results from substantial decreases in Keap1, PTEN and most of 26S proteasomal subunits in Nrf1α-/- cells. Further investigation of xenograft model mice showed that malignant growth of Nrf1α-/--derived tumors is almost abolished by silencing of Nrf2, while Nrf1α+/⁺-tumor is markedly repressed by an inactive mutant (i.e., Nrf2-/-ΔTA), but largely unaffected by a priori constitutive activator (i.e., caNrf2ΔN). Mechanistic studies, combined with transcriptomic sequencing, unraveled a panoramic view of opposing and unifying inter-regulatory cross-talks between Nrf1α and Nrf2 at different layers of the endogenous regulatory networks from multiple signaling towards differential expression profiling of target genes. Collectively, Nrf1α manifests a dominant tumor-suppressive effect by confining Nrf2 oncogenicity. Though as a tumor promoter, Nrf2 can also, in turn, directly activate the transcriptional expression of Nrf1 to form a negative feedback loop. In view of such mutual inter-regulation by between Nrf1α and Nrf2, it should thus be taken severe cautions to interpret the experimental results from loss of Nrf1α, Nrf2 or both.

18.
PLoS One ; 13(12): e0208474, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30513114

RESUMO

BACKGROUND: Hypoxia training enhances the endurance capacity of athletes. This response may in part be attributed to the hypoxia-induced increase in antioxidant capacity in skeletal muscles. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor which regulates the expression of genes via binding to the antioxidant-response element (ARE) of these genes, plays a crucial role in stimulating the body's defense system and potentially responds to hypoxia. Meanwhile, hypoxia-inducible factor-1α (HIF-1α) is an important player in protecting cells from hypoxic stress. The purpose of this study was to investigate the effects of acute hypoxia exposure with different durations on the activation of Nrf2-ARE pathway and a possible regulatory role of HIF-1α in these responses. METHODS: C57BL/6J mice were allocated into the non-hypoxia 0-hour, 6-hour, 24-hour, and 48-hour hypoxic exposure (11.2% oxygen) groups. The quadriceps femoris was collected immediately after hypoxia. Further, to investigate the possible role of HIF-1α, C2C12 myoblasts with HIF-1α knockdown by small interfering RNA (siRNA) and the inducible HIF-1α transgenic mice were employed. RESULTS: The results showed that 48-hour hypoxia exposure up-regulated protein expression of Nrf2, Nrf2/ARE binding activity and the transcription of antioxidative genes containing ARE (Sod1 and others) in mouse skeletal muscle. Moreover, HIF-1α siRNA group of C2C12 myoblasts showed a remarkable inhibition of Nrf2 protein expression and nuclear accumulation in hypoxia exposure for 72 hours compared with that in siRNA-Control group of the cells. In addition, HIF-1α transgenic mice gave higher Nrf2 protein expression, Nrf2/ARE binding activity and expressions of Nrf2-mediated antioxidative genes in their skeletal muscle, compared with those in the wild-type mice. CONCLUSIONS: The findings suggested that the acute hypoxia exposure could trigger the activation of Nrf2-ARE pathway, with longer duration associated with higher responses, and HIF-1α expression might be involved in promoting the Nrf2-mediated antioxidant responses in skeletal muscle.


Assuntos
Elementos de Resposta Antioxidante/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia , Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Elementos de Resposta Antioxidante/genética , Antioxidantes/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo
19.
Adv Exp Med Biol ; 1090: 145-163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390289

RESUMO

Leptin is an adipocyte-derived hormone, which contributes to the homeostatic regulation of energy balance and metabolism through humoral and neural pathways. Leptin acts on the neurons in certain brain areas such as the hypothalamus, hippocampus, and brain stem to regulate food intake, thermogenesis, energy expenditure, and homeostasis of glucose/lipid metabolism. The pathologically increased circulating leptin is a biomarker of leptin resistance, which is common in obese individuals. Leptin resistance is defined by a reduced sensitivity or a failure in response of the brain to leptin, showing a decrease in the ability of leptin to suppress appetite or enhance energy expenditure, which causes an increased food intake and finally leads to overweight, obesity, cardiovascular diseases, and other metabolic disorders. Leptin resistance is a challenge for clinical treatment or drug discovery of obesity. Until recently, emerging evidence has been showing novel mechanisms of the leptin resistance. Here, we summarized the advances and controversy of leptin resistance and associated diseases, for better understanding the physiology and pathophysiology of leptin as well as the new strategies for treating obesity and metabolic disorders.


Assuntos
Metabolismo Energético , Homeostase , Leptina/fisiologia , Encéfalo/fisiologia , Humanos , Obesidade/patologia
20.
Adv Exp Med Biol ; 1090: 123-144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390288

RESUMO

Leptin plays a critical role in the regulation of energy balance and metabolic homeostasis. Impairment of leptin signaling is closely involved in the pathogenesis of obesity and metabolic diseases, including diabetes, cardiovascular disease, etc. Leptin initiates its intracellular signaling in the leptin-receptor-expressing neurons in the central nervous system to exert physiological function, thereby leading to a suppression of appetite, a reduction of food intake, a promotion of mitochondrial oxidation, an enhancement of thermogenesis, and a decrease in body weight. In this review, the studies on leptin neural and cellular pathways are summarized with an emphasis on the progress made during the last 10 years, for better understanding the molecular mechanism of obesity and other metabolic diseases.


Assuntos
Leptina/fisiologia , Receptores para Leptina/fisiologia , Transdução de Sinais , Metabolismo Energético , Homeostase , Humanos , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA