Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0292916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422090

RESUMO

Climate changes have altered biodiversity and ultimately induced community changes that have threatened the survival of certain aquatic organisms such as fish species. Obtaining biological and genetic information on endangered fish species is critical for ecological population management. Thamnaconus multilineatus, registered as an endangered species by the IUCN in 2019, is a Data Deficient (DD) species with a remarkably small number of habitats worldwide and no known information other than its habitat and external form. In this study, we characterized the external and osteological morphology of a T. multilineatus specimen collected from eastern Jeju Island, South Korea, in 2020. We also investigated the phylogenetic relationships among related fish species through complete mitochondrial DNA (mtDNA) analysis of the T. multilineatus specimen. The external and skeletal characteristics of T. multilineatus were similar to those of previous reports describing other fish of the genus Thamnaconus, making it difficult to classify T. multilineatus as a similar species based only on morphological characteristics. As a result of analyzing the complete mtDNA of T. multilineatus, the length of the mtDNA was determined to be 16,435 bp, and the mitochondrial genome was found to have 37 CDCs, including 13 PCGs, 22 tRNAs, and 2 rRNAs. In the phylogenetic analysis within the suborder Balistoidei, T. multilineatus mtDNA formed a cluster with fish of the genus Thamnaconus. This study is the first to report on the skeletal structure and complete mtDNA of T. multilineatus. Since the current research on T. multilineatus has only been reported on morphology, the results of this study will be utilized as important information for the management and restoration of T. multilineatus as an endangered species and significant fishery resource.


Assuntos
Tetraodontiformes , Animais , Filogenia , DNA Mitocondrial/genética , Mitocôndrias , Biodiversidade , Espécies em Perigo de Extinção
2.
Artigo em Inglês | MEDLINE | ID: mdl-36141743

RESUMO

Pale chub (Zacco platypus) is a dominant species in urban rivers and reservoirs, and it is used as an indicator to monitor the effects of environmental contaminants. Gene responses at the molecular level can reflect the health of fish challenged with environmental stressors. The objective of this study was to identify correlations between water quality factors and the expression of stress-related genes in Z. platypus from different lake environments (Singal and Juam Lakes). To do so, transcriptional responses of genes involving cellular homeostasis (heat-shock protein 70, HSP70; heat-shock protein 90, HSP90), metal detoxification (metallothionein, MT), and antioxidation (superoxide dismutase, SOD; catalase, CAT) were analyzed in the gill and liver tissues of Z. platypus. HSP70, HSP90, and MT genes were overall upregulated in Z. platypus from Singal Lake, which suffered from poorer water quality than Juam Lake. In addition, gene responses were significantly higher in Singal Lake outflow. Upregulation of HSP70, HSP90, and MT was significantly higher in Z. platypus gills than in the liver tissue. In addition, integrated biomarker response and heatmap analysis determined correlations between expression of biomarker genes or water quality factors and sampling sites of both lakes. These results suggest that stress-related genes used as multiple biomarkers may reflect spatial characteristics and water quality of different lake environments, and they can be used for biomonitoring and ecological risk assessment.


Assuntos
Cyprinidae , Ornitorrinco , Poluentes Químicos da Água , Animais , Monitoramento Biológico , Biomarcadores/metabolismo , Catalase/metabolismo , Cyprinidae/metabolismo , Ecossistema , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Metalotioneína , Ornitorrinco/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA