Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124541

RESUMO

In recent years, laser cladding technology has been widely used in surface modification of titanium alloys. To improve the wear resistance of titanium alloys, ceramic-reinforced nickel-based composite coatings were prepared on a TC4 alloy substrateusing coaxial powder feeding laser cladding technology. Ti (C, N) ceramic was synthesized in situ by laser cladding by adding different contents (10%, 20%, 30%, and 40%) of TiN, pure Ti powder, graphite, and In625 powder. Thisestudy showed that small TiN particles were decomposed and directly formed the Ti (C, N) phase, while large TiN particles were not completely decomposed. The in situ synthetic TiCxN1-x phase was formed around the large TiN particles. With the increase in the proportion of powder addition, the wear volume of the coating shows a decreasing trend, and the wear resistance of the surface coating is improving. The friction coefficient of the sample with 40% TiN, pure Ti powder, and graphite powder is 0.829 times that of the substrate. The wear volume is 0.145 times that of the substrate. The reason for this is that with the increase in TiN, Ti, and graphite in the powder, there are more ceramic phases in the cladding layer, and the hard phases such as TiC, Ti(C, N) and Ti2Ni play the role in the structure of the "backbone", inhibit the damage caused by micro-cutting, and impede the movement of the tearing point of incision, so that the coating has a higher abrasion resistance.

2.
Ultrason Sonochem ; 101: 106713, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38056086

RESUMO

Ultrasonic technology is widely applied in the engineering ceramic polishing processes without the limitation of material properties and ideally integrated into computer numerical control system. Ultrasonic-induced cavitation and mechanical vibration effect could accelerate the motion of solid abrasives. The individual behaviors of microjet/shockwave of ultrasonic cavitation in gases and liquids, and micro-abrasives with simple harmonic vibrations in solids and liquids has been extensively studied. To conduct a systematic and integrated study of abrasives behavior in the polishing contact region involving abrasive, surround-workpiece wall, ultrasonic physical vibration, and ultrasonic cavitation impact, a novel model integrating the free abrasive motion velocity and fixed abrasive indentation depth under multi-scale contact was proposed according to Hertzian contact theory, Greenwood-Williamson model, indentation deformation theory, the basic equations of cavitation bubble dynamics, cavitation impact control equations, and Newton's law of motion equation. The effects of ultrasonic amplitude, ultrasonic frequency, preloading force and particle size on the proposed model were investigated by theoretical analysis and numerical simulations. Ultrasonic physical vibration mainly influences the dynamic gap and further influence the number of different abrasives. Furthermore, the indentation depth of fixed abrasive depends mainly on the abrasive geometry. As the contact gap and abrasive size decrease, the indentation depth gradually decreases. Under the synergistic effect of cavitation-induced shock wave and microjet, the velocity of free abrasive in this paper is generally 0-150 m/s, and the kinetic energy of free abrasive increases roughly linearly with increasing frequency and approximately as a quadratic function with increasing particle size. Increasing the preloading force leads to a reduction in the abrasive kinetic energy. Besides, the kinetic energy induced by the shock wave has a cliff-like increment at an amplitude of 0.7-0.8 µm. It is revealed that the abrasive kinetic energy is suppressed by the cavitation bubble expansion and collapse at smaller ultrasonic pressure amplitude and surround-wall distance. This research provides a theoretical reference for the modeling of potential defects and material removal on the workpiece surface caused by abrasive motion during polishing, and reduces the trial cost for parameter optimization in actual polishing processing.

3.
Materials (Basel) ; 16(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959463

RESUMO

The manufacturing process for many large components of machines leads to a difference in their properties and performances based on changes in location. Functionally graded materials can meet these requirements and address the issue of generation and expansion of interface cracks. Ni204-dr60 gradient coatings were successfully fabricated using laser direct energy deposition (LDED). Microstructure mechanism evolution and microhardness of the gradient coating were comprehensively investigated. The change in the precipitated phase at the grain boundary and the intergranular zones resulted in a change in microstructural characteristics and also affected the microhardness distribution. The reinforced phase of the Ni204 → dr60 gradient zone from Ni204 to dr60 gradually precipitated and was rich in Mo and Nb phase, lath-shaped CrCx phase, network-shaped CrCx phase, block shape (Ni, Si) (C, B) phase, block CrCx phase, and block Cr (B, C) phase. The gradient coating thus acts as a potential candidate to effectively solve the problem of crack generation at the interface of dr60 and the substrate.

4.
Materials (Basel) ; 16(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629964

RESUMO

As high-level equipment and advanced technologies continue toward sophistication, ultrasonic technology is extensively used in the polishing process of difficult-to-process materials to achieve efficiently smooth surfaces with nanometer roughness. The polishing of silicon carbide, an indispensable difficult-to-machine optical material, is extremely challenging due to its high hardness and good wear resistance. To overcome the current silicon carbide (SiC) ultrasonic polishing (UP) process deficiencies and strengthen the competitiveness of the UP industry, the multi-objective optimization based on the Taguchi-GRA method for the UP process with SiC ceramic to obtain the optimal process parameter combination is a vital and urgently demanded task. The orthogonal experiment, analysis of variance, grey relational analysis (GRA), and validation were performed to optimize the UP schemes. For a single objective of roughness and removal rate, the influence degree is abrasive size > preloading force > abrasive content > spindle speed > feed rate, and spindle speed > abrasive size > feed rate > preloading force > abrasive content, respectively. Moreover, the optimal process combination integrating these two objectives is an abrasive content of 14 wt%, abrasive size of 2.5 µm, preloading force of 80 N, spindle speed of 8000 rpm, and feed rate of 1 mm/s. The optimized workpiece surface morphology is better, and the roughness and removal rate are increased by 7.14% and 28.34%, respectively, compared to the best orthogonal group. The Taguchi-GRA method provides a more scientific approach for evaluating the comprehensive performance of polishing. The optimized process parameters have essential relevance for the ultrasonic polishing of SiC materials.

5.
Environ Sci Pollut Res Int ; 30(14): 40870-40885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622588

RESUMO

Low parts utilization, high resource consumption, and low profit margins have become the main factors hindering the development of machine tool remanufacturing in China. A machine tool manufacturing company was taken as a case to investigate the improvement of the remanufacturing production line. The remanufacturing workshop and production line of the case enterprise have been completely re-planned, adding remaining life assessment, additive manufacturing, quality monitoring, and reassembly quality control. After applying the new production line, the energy consumption and water consumption of each remanufacturing machine tool were reduced by 29.87 kgce and 0.042 m3, respectively, and the pollutants generated were reduced by 4.352 kg. With the increase in remanufactured machine tool capacity, the part reutilization has increased by 26.9%. Despite satisfactory results, machine remanufacturing still faces many difficulties in China. Combined with case enterprises, the current situation of machine tool remanufacturing in China was discussed, and several suggestions for promoting remanufacturing in Chinese manufacturing companies were put forward.


Assuntos
Comércio , China
6.
Materials (Basel) ; 14(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204213

RESUMO

A chiral structure with a negative Poisson's ratio containing a hollow circle with varying diameters was designed, and the finite element method was used to investigate the variation in the Poisson's ratio when the hollow circle diameter was varied (d = 0, 1, 2, 3, and 4 mm). The simulation results showed that the Poisson's ratio was sensitive to the hollow circle diameter, and the minimum Poisson's ratio was -0.43. Three specimens with different hollow circle diameters (d' = 0, 1, and 3 mm) were 3D-printed from thermoplastic polyurethane, and the Poisson's ratio and equivalent elastic modulus were measured. In the elastic range, the Poisson's ratio increased and the equivalent elastic modulus decreased as the hollow circle diameter increased. The simulation and experimental results showed good agreement. The proposed structure is expected to be applicable to protective sports gear owing to its high energy absorption and the fact that its properties can be modified as required by adjusting the geometric parameters of the unit cell.

7.
Sensors (Basel) ; 19(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398825

RESUMO

Using consumer depth cameras at close range yields a higher surface resolution of the object, but this makes more serious noises. This form of noise tends to be located at or on the edge of the realistic surface over a large area, which is an obstacle for real-time applications that do not rely on point cloud post-processing. In order to fill this gap, by analyzing the noise region based on position and shape, we proposed a composite filtering system for using consumer depth cameras at close range. The system consists of three main modules that are used to eliminate different types of noise areas. Taking the human hand depth image as an example, the proposed filtering system can eliminate most of the noise areas. All algorithms in the system are not based on window smoothing and are accelerated by the GPU. By using Kinect v2 and SR300, a large number of contrast experiments show that the system can get good results and has extremely high real-time performance, which can be used as a pre-step for real-time human-computer interaction, real-time 3D reconstruction, and further filtering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA