Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Genome Res ; 34(4): 642-654, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38719472

RESUMO

Omics methods are widely used in basic biology and translational medicine research. More and more omics data are collected to explain the impact of certain risk factors on clinical outcomes. To explain the mechanism of the risk factors, a core question is how to find the genes/proteins/metabolites that mediate their effects on the clinical outcome. Mediation analysis is a modeling framework to study the relationship between risk factors and pathological outcomes, via mediator variables. However, high-dimensional omics data are far more challenging than traditional data: (1) From tens of thousands of genes, can we overcome the curse of dimensionality to reliably select a set of mediators? (2) How do we ensure that the selected mediators are functionally consistent? (3) Many biological mechanisms contain nonlinear effects. How do we include nonlinear effects in the high-dimensional mediation analysis? (4) How do we consider multiple risk factors at the same time? To meet these challenges, we propose a new exploratory mediation analysis framework, medNet, which focuses on finding mediators through predictive modeling. We propose new definitions for predictive exposure, predictive mediator, and predictive network mediator, using a statistical hypothesis testing framework to identify predictive exposures and mediators. Additionally, two heuristic search algorithms are proposed to identify network mediators, essentially subnetworks in the genome-scale biological network that mediate the effects of single or multiple exposures. We applied medNet on a breast cancer data set and a metabolomics data set combined with food intake questionnaire data. It identified functionally consistent network mediators for the exposures' impact on the outcome, facilitating data interpretation.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Genômica/métodos , Feminino , Metabolômica/métodos , Fatores de Risco , Redes Reguladoras de Genes , Algoritmos
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38581417

RESUMO

Untargeted metabolomics based on liquid chromatography-mass spectrometry technology is quickly gaining widespread application, given its ability to depict the global metabolic pattern in biological samples. However, the data are noisy and plagued by the lack of clear identity of data features measured from samples. Multiple potential matchings exist between data features and known metabolites, while the truth can only be one-to-one matches. Some existing methods attempt to reduce the matching uncertainty, but are far from being able to remove the uncertainty for most features. The existence of the uncertainty causes major difficulty in downstream functional analysis. To address these issues, we develop a novel approach for Bayesian Analysis of Untargeted Metabolomics data (BAUM) to integrate previously separate tasks into a single framework, including matching uncertainty inference, metabolite selection and functional analysis. By incorporating the knowledge graph between variables and using relatively simple assumptions, BAUM can analyze datasets with small sample sizes. By allowing different confidence levels of feature-metabolite matching, the method is applicable to datasets in which feature identities are partially known. Simulation studies demonstrate that, compared with other existing methods, BAUM achieves better accuracy in selecting important metabolites that tend to be functionally consistent and assigning confidence scores to feature-metabolite matches. We analyze a COVID-19 metabolomics dataset and a mouse brain metabolomics dataset using BAUM. Even with a very small sample size of 16 mice per group, BAUM is robust and stable. It finds pathways that conform to existing knowledge, as well as novel pathways that are biologically plausible.


Assuntos
Metabolômica , Camundongos , Animais , Teorema de Bayes , Tamanho da Amostra , Incerteza , Metabolômica/métodos , Simulação por Computador
3.
Nat Med ; 30(3): 670-674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321219

RESUMO

Dengue is a global epidemic causing over 100 million cases annually. The clinical symptoms range from mild fever to severe hemorrhage and shock, including some fatalities. The current paradigm is that these severe dengue cases occur mostly during secondary infections due to antibody-dependent enhancement after infection with a different dengue virus serotype. India has the highest dengue burden worldwide, but little is known about disease severity and its association with primary and secondary dengue infections. To address this issue, we examined 619 children with febrile dengue-confirmed infection from three hospitals in different regions of India. We classified primary and secondary infections based on IgM:IgG ratios using a dengue-specific enzyme-linked immunosorbent assay according to the World Health Organization guidelines. We found that primary dengue infections accounted for more than half of total clinical cases (344 of 619), severe dengue cases (112 of 202) and fatalities (5 of 7). Consistent with the classification based on binding antibody data, dengue neutralizing antibody titers were also significantly lower in primary infections compared to secondary infections (P ≤ 0.0001). Our findings question the currently widely held belief that severe dengue is associated predominantly with secondary infections and emphasizes the importance of developing vaccines or treatments to protect dengue-naive populations.


Assuntos
Coinfecção , Vírus da Dengue , Dengue , Dengue Grave , Humanos , Criança , Dengue/epidemiologia , Dengue Grave/epidemiologia , Anticorpos Antivirais , Coinfecção/epidemiologia , Febre
4.
IUBMB Life ; 76(2): 88-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37596858

RESUMO

Our hospital admitted a patient who had difficulty in coagulation even after blood replacement, and the patient had abused caffeine sodium benzoate (CSB) for more than 20 years. Hence, we aimed to explore whether CSB may cause dysfunction in vascular endothelial cells and its possible mechanism. Low, medium, and high concentrations of serum of long-term CSB intake patients were used to treat HUVECs, with LPS as the positive control. MTT and CCK8 were performed to verify CSB's damaging effect on HUVECs. The expression of ET-1, ICAM-1, VCAM-1, and E-selectin were measured by ELISA. TUNEL assay and Matrigel tube formation assay were carried out to detect apoptosis and angiogenesis of HUVECs. Flow cytometry was applied to analyze cell cycles and expression of CD11b, PDGF, and ICAM-1. Expression of PDGF-BB and PCNA were examined by western blot. The activation of MAPK signaling pathway was detected by qRT-PCR and western blot. Intracellular Ca2+ density was detected by fluorescent probes. CCK8 assay showed high concentration of CSB inhibited cell viability. Cell proliferation and angiogenesis were inhibited by CSB. ET-1, ICAM-1, VCAM-1, and E-selectin upregulated in CSB groups. CSB enhanced apoptosis of HUVECs. CD11b, ICAM-1 increased and PDGF reduced in CSB groups. The expression level and phosphorylation level of MEK, ERK, JUN, and p38 in MAPK pathway elevated in CSB groups. The expression of PCNA and PDGF-BB was suppressed by CSB. Intracellular Ca2+ intensity was increased by CSB. Abuse of CSB injured HUVECs and caused coagulation disorders.


Assuntos
Selectina E , Molécula 1 de Adesão Intercelular , Humanos , Células Endoteliais da Veia Umbilical Humana , Células Cultivadas , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Selectina E/metabolismo , Benzoato de Sódio/metabolismo , Benzoato de Sódio/farmacologia , Becaplermina/farmacologia , Cafeína/metabolismo , Cafeína/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo
5.
Front Neurosci ; 17: 1235321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920300

RESUMO

Biological evidence indicewates that the brain atrophy can be involved at the onset of neuropathological pathways of Alzheimer's disease. However, there is lack of formal statistical methods to perform genetic dissection of brain activation phenotypes such as shape and intensity. To this end, we propose a Bayesian hierarchical model which consists of two levels of hierarchy. At level 1, we develop a Bayesian nonparametric level set (BNLS) model for studying the brain activation region shape. At level 2, we construct a regression model to select genetic variants that are strongly associated with the brain activation intensity, where a spike-and-slab prior and a Gaussian prior are chosen for feature selection. We develop efficient posterior computation algorithms based on the Markov chain Monte Carlo (MCMC) method. We demonstrate the advantages of the proposed method via extensive simulation studies and analyses of imaging genetics data in the Alzheimer's disease neuroimaging initiative (ADNI) study.

6.
Comput Biol Med ; 166: 107492, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37820558

RESUMO

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.

7.
Nat Commun ; 14(1): 4789, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553348

RESUMO

Route of immunization can markedly influence the quality of immune response. Here, we show that intradermal (ID) but not intramuscular (IM) modified vaccinia Ankara (MVA) vaccinations provide protection from acquisition of intravaginal tier2 simian-human immunodeficiency virus (SHIV) challenges in female macaques. Both routes of vaccination induce comparable levels of serum IgG with neutralizing and non-neutralizing activities. The protection in MVA-ID group correlates positively with serum neutralizing and antibody-dependent phagocytic activities, and envelope-specific vaginal IgA; while the limited protection in MVA-IM group correlates only with serum neutralizing activity. MVA-ID immunizations induce greater germinal center Tfh and B cell responses, reduced the ratio of Th1 to Tfh cells in blood and showed lower activation of intermediate monocytes and inflammasome compared to MVA-IM immunizations. This lower innate activation correlates negatively with induction of Tfh responses. These data demonstrate that the MVA-ID vaccinations protect against intravaginal SHIV challenges by modulating the innate and T helper responses.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vacínia , Animais , Humanos , Feminino , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacínia/prevenção & controle , Macaca mulatta , Vaccinia virus , Vacinação , HIV , Anticorpos Antivirais
8.
Biomolecules ; 13(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509188

RESUMO

Random Forest (RF) is a widely used machine learning method with good performance on classification and regression tasks. It works well under low sample size situations, which benefits applications in the field of biology. For example, gene expression data often involve much larger numbers of features (p) compared to the size of samples (n). Though the predictive accuracy using RF is often high, there are some problems when selecting important genes using RF. The important genes selected by RF are usually scattered on the gene network, which conflicts with the biological assumption of functional consistency between effective features. To improve feature selection by incorporating external topological information between genes, we propose the Graph Random Forest (GRF) for identifying highly connected important features by involving the known biological network when constructing the forest. The algorithm can identify effective features that form highly connected sub-graphs and achieve equivalent classification accuracy to RF. To evaluate the capability of our proposed method, we conducted simulation experiments and applied the method to two real datasets-non-small cell lung cancer RNA-seq data from The Cancer Genome Atlas, and human embryonic stem cell RNA-seq dataset (GSE93593). The resulting high classification accuracy, connectivity of selected sub-graphs, and interpretable feature selection results suggest the method is a helpful addition to graph-based classification models and feature selection procedures.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Algoritmo Florestas Aleatórias , Algoritmos , Aprendizado de Máquina
9.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369636

RESUMO

Untargeted metabolomics is gaining widespread applications. The key aspects of the data analysis include modeling complex activities of the metabolic network, selecting metabolites associated with clinical outcome and finding critical metabolic pathways to reveal biological mechanisms. One of the key roadblocks in data analysis is not well-addressed, which is the problem of matching uncertainty between data features and known metabolites. Given the limitations of the experimental technology, the identities of data features cannot be directly revealed in the data. The predominant approach for mapping features to metabolites is to match the mass-to-charge ratio (m/z) of data features to those derived from theoretical values of known metabolites. The relationship between features and metabolites is not one-to-one since some metabolites share molecular composition, and various adduct ions can be derived from the same metabolite. This matching uncertainty causes unreliable metabolite selection and functional analysis results. Here we introduce an integrated deep learning framework for metabolomics data that take matching uncertainty into consideration. The model is devised with a gradual sparsification neural network based on the known metabolic network and the annotation relationship between features and metabolites. This architecture characterizes metabolomics data and reflects the modular structure of biological system. Three goals can be achieved simultaneously without requiring much complex inference and additional assumptions: (1) evaluate metabolite importance, (2) infer feature-metabolite matching likelihood and (3) select disease sub-networks. When applied to a COVID metabolomics dataset and an aging mouse brain dataset, our method found metabolic sub-networks that were easily interpretable.


Assuntos
COVID-19 , Aprendizado Profundo , Animais , Camundongos , Metabolômica/métodos , Metaboloma , Redes e Vias Metabólicas
10.
Biomed Chromatogr ; 37(5): e5567, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36515669

RESUMO

The present study aimed to systematically assess the potential biomarkers in the serum samples of patients with long-term inhalation of caffeine-sodium benzoate (CSB). LC-MS was applied to analyze the metabolic profiles of serum samples of patients with the long-term intake of CSB (n = 35) and other volunteers with no intake of CSB treated as the control group (n = 35). The raw data of metabolic profiles were analyzed via principal component analysis, partial least squares analysis, and orthogonal partial least squares analysis. MBRole 2.0 online tools were used to analyze the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of different metabolites. The serum metabolic profiles showed several metabolites with large variations, including 2-propyl-2,4-pentadienoic acid, 24-hydroxycholesterol, 3-O-sulfogalactosylceramide (d18:1/24:1(15Z)), 3-O-sulfogalactosylceramide (d18:1/12:0), 3-O-sulfogalactosylceramide (d18:1/14:0), 3a,7a-dihydroxy-5b-cholestan-26-al, 3a,7a-dihydroxy-5b-cholestane, 7a,25-dihydroxycholesterol, bilirubin, and dehydroepiandrosterone sulfate. The Kyoto Encyclopedia of Genes and Genomes pathways involved in metabolism included 'choline metabolism in cancer' and 'glycerophospholipid metabolism'. In conclusion, the present study provides a basis with which to explore the molecular-specific mechanisms concerning the effects of the long-term inhalation of CSB on human physical and mental health.


Assuntos
Cafeína , Benzoato de Sódio , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica , Biomarcadores
11.
Bioinformatics ; 38(14): 3662-3664, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35639952

RESUMO

MOTIVATION: Testing for pathway enrichment is an important aspect in the analysis of untargeted metabolomics data. Due to the unique characteristics of untargeted metabolomics data, some key issues have not been fully addressed in existing pathway testing algorithms: (i) matching uncertainty between data features and metabolites; (ii) lacking of method to analyze positive mode and negative mode liquid chromatography-mass spectrometry (LC/MS) data simultaneously on the same set of subjects; (iii) the incompleteness of pathways in individual software packages. RESULTS: We developed an innovative R/Bioconductor package: metabolic pathway testing with positive and negative mode data (metapone), which can perform two novel statistical tests that take matching uncertainty into consideration-(i) a weighted gene set enrichment analysis-type test and (ii) a permutation-based weighted hypergeometric test. The package is capable of combining positive- and negative-ion mode results in a single testing scheme. For comprehensiveness, the built-in pathways were manually curated from three sources: Kyoto Encyclopedia of Genes and Genomes, Mummichog and The Small Molecule Pathway Database. AVAILABILITY AND IMPLEMENTATION: The package is available at https://bioconductor.org/packages/devel/bioc/html/metapone.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metabolômica , Software , Humanos , Genoma , Algoritmos , Redes e Vias Metabólicas
12.
Environ Sci Technol ; 56(10): 6525-6536, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35476389

RESUMO

In the omics era, saliva, a filtrate of blood, may serve as an alternative, noninvasive biospecimen to blood, although its use for specific metabolomic applications has not been fully evaluated. We demonstrated that the saliva metabolome may provide sensitive measures of traffic-related air pollution (TRAP) and associated biological responses via high-resolution, longitudinal metabolomics profiling. We collected 167 pairs of saliva and plasma samples from a cohort of 53 college student participants and measured corresponding indoor and outdoor concentrations of six air pollutants for the dormitories where the students lived. Grand correlation between common metabolic features in saliva and plasma was moderate to high, indicating a relatively consistent association between saliva and blood metabolites across subjects. Although saliva was less associated with TRAP compared to plasma, 25 biological pathways associated with TRAP were detected via saliva and accounted for 69% of those detected via plasma. Given the slightly higher feature reproducibility found in saliva, these findings provide some indication that the saliva metabolome offers a sensitive and practical alternative to blood for characterizing individual biological responses to environmental exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição Relacionada com o Tráfego , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes , Saliva/química
13.
Metabolomics ; 18(4): 23, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35391564

RESUMO

INTRODUCTION: Excessive daytime sleepiness is a debilitating symptom of obstructive sleep apnea (OSA) linked to cardiovascular disease, and metabolomic mechanisms underlying this relationship remain unknown. We examine whether metabolites from inflammatory and oxidative stress-related pathways that were identified in our prior work could be involved in connecting the two phenomena. METHODS: This study included 57 sleepy (Epworth Sleepiness Scale (ESS) ≥ 10) and 37 non-sleepy (ESS < 10) participants newly diagnosed and untreated for OSA that completed an overnight in-lab or at home sleep study who were recruited from the Emory Mechanisms of Sleepiness Symptoms Study (EMOSS). Differences in fasting blood samples of metabolites were explored in participants with sleepiness versus those without and multiple linear regression models were utilized to examine the association between metabolites and mean arterial pressure (MAP). RESULTS: The 24-h MAP was higher in sleepy 92.8 mmHg (8.4) as compared to non-sleepy 88.8 mmHg (8.1) individuals (P = 0.03). Although targeted metabolites were not significantly associated with MAP, when we stratified by sleepiness group, we found that sphinganine is significantly associated with MAP (Estimate = 8.7, SE = 3.7, P = 0.045) in non-sleepy patients when controlling for age, BMI, smoking status, and apnea-hypopnea index (AHI). CONCLUSION: This is the first study to evaluate the relationship of inflammation and oxidative stress related metabolites in sleepy versus non-sleepy participants with newly diagnosed OSA and their association with 24-h MAP. Our study suggests that Sphinganine is associated with 24 hour MAP in the non-sleepy participants with OSA.


Assuntos
Apneia Obstrutiva do Sono , Sonolência , Pressão Arterial , Humanos , Metabolômica , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/diagnóstico , Esfingosina/análogos & derivados
14.
PLoS Comput Biol ; 18(1): e1009826, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081109

RESUMO

In the integrative analyses of omics data, it is often of interest to extract data representation from one data type that best reflect its relations with another data type. This task is traditionally fulfilled by linear methods such as canonical correlation analysis (CCA) and partial least squares (PLS). However, information contained in one data type pertaining to the other data type may be complex and in nonlinear form. Deep learning provides a convenient alternative to extract low-dimensional nonlinear data embedding. In addition, the deep learning setup can naturally incorporate the effects of clinical confounding factors into the integrative analysis. Here we report a deep learning setup, named Autoencoder-based Integrative Multi-omics data Embedding (AIME), to extract data representation for omics data integrative analysis. The method can adjust for confounder variables, achieve informative data embedding, rank features in terms of their contributions, and find pairs of features from the two data types that are related to each other through the data embedding. In simulation studies, the method was highly effective in the extraction of major contributing features between data types. Using two real microRNA-gene expression datasets, one with confounder variables and one without, we show that AIME excluded the influence of confounders, and extracted biologically plausible novel information. The R package based on Keras and the TensorFlow backend is available at https://github.com/tianwei-yu/AIME.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Simulação por Computador , Bases de Dados Genéticas , Análise dos Mínimos Quadrados , MicroRNAs/genética , MicroRNAs/metabolismo , Software , Transcriptoma/genética
15.
Environ Sci Technol ; 56(11): 7350-7361, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35075906

RESUMO

Particulate oxidative potential may comprise a key health-relevant parameter of particulate matter (PM) toxicity. To identify biological perturbations associated with particulate oxidative potential and examine the underlying molecular mechanisms, we recruited 54 participants from two dormitories near and far from a congested highway in Atlanta, GA. Fine particulate matter oxidative potential ("FPMOP") levels at the dormitories were measured using dithiothreitol assay. Plasma and saliva samples were collected from participants four times for longitudinal high-resolution metabolic profiling. We conducted metabolome-wide association studies to identify metabolic signals with FPMOP. Leukotriene metabolism and galactose metabolism were top pathways associated with ≥5 FPMOP-related indicators in plasma, while vitamin E metabolism and leukotriene metabolism were found associated with most FPMOP indicators in saliva. We observed different patterns of perturbed pathways significantly associated with water-soluble and -insoluble FPMOPs, respectively. We confirmed five metabolites directly associated with FPMOP, including hypoxanthine, histidine, pyruvate, lactate/glyceraldehyde, and azelaic acid, which were implications of perturbations in acute inflammation, nucleic acid damage and repair, and energy perturbation. The unique metabolic signals were specific to FPMOP, but not PM mass, providing initial indication that FPMOP might constitute a more sensitive, health-relevant measure for elucidating etiologies related to PM2.5 exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Leucotrienos/metabolismo , Metaboloma , Estresse Oxidativo , Material Particulado/análise , Saliva/química , Saliva/metabolismo
16.
Stat Med ; 41(7): 1242-1262, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34816464

RESUMO

Jointly analyzing transcriptomic data and the existing biological networks can yield more robust and informative feature selection results, as well as better understanding of the biological mechanisms. Selecting and classifying node features over genome-scale networks has become increasingly important in genomic biology and genomic medicine. Existing methods have some critical drawbacks. The first is they do not allow flexible modeling of different subtypes of selected nodes. The second is they ignore nodes with missing values, very likely to increase bias in estimation. To address these limitations, we propose a general modeling framework for Bayesian node classification (BNC) with missing values. A new prior model is developed for the class indicators incorporating the network structure. For posterior computation, we resort to the Swendsen-Wang algorithm for efficiently updating class indicators. BNC can naturally handle missing values in the Bayesian modeling framework, which improves the node classification accuracy and reduces the bias in estimating gene effects. We demonstrate the advantages of our methods via extensive simulation studies and the analysis of the cutaneous melanoma dataset from The Cancer Genome Atlas.


Assuntos
Melanoma , Neoplasias Cutâneas , Algoritmos , Teorema de Bayes , Simulação por Computador , Humanos , Melanoma/genética
17.
Front Oncol ; 11: 794015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858863

RESUMO

The acquisition of cancer stem-like properties is believed to be responsible for cancer metastasis and therapeutic resistance in cervical cancer (CC). CC tissues display a high expression level of hexokinase 2 (HK2), which is critical for the proliferation and migration of CC cells. However, little is known about the functional role of HK2 in the maintenance of cancer stem cell-like ability and cisplatin resistance of CC cells. Here, we showed that the expression of HK2 is significantly elevated in CC tissues, and high HK2 expression correlates with poor prognosis. HK2 overexpression (or knockdown) can promote (or inhibit) the sphere-forming ability and cisplatin resistance in CC cells. In addition, HK2-overexpressing CC cells show enhanced expression of cancer stem cell-associated genes (including SOX2 and OCT4) and drug resistance-related gene MDR1. The expression of HK2 is mediated by miR-145, miR-148a, and miR-497 in CC cells. Overexpression of miR-148a is sufficient to reduce sphere formation and cisplatin resistance in CC cells. Our results elucidate a novel mechanism through which miR-148a regulates CC stem cell-like properties and chemoresistance by interfering with the oncogene HK2, providing the first evidence that dysregulation of the miR-148a/HK2 signaling plays a critical role in the maintenance of sphere formation and cisplatin resistance of CC cells. Our findings may guide future studies on therapeutic strategies that reverse cisplatin resistance by targeting this pathway.

18.
Environ Int ; 157: 106866, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34525388

RESUMO

The exposome overhauls conventional environmental health impact research paradigms and provides a novel methodological framework that comprehensively addresses the complex, highly dynamic interplays of exogenous exposures, endogenous exposures, and modifiable factors in humans. Holistic assessments of the adverse health effects and systematic elucidation of the mechanisms underlying environmental exposures are major scientific challenges with widespread societal implications. However, to date, few studies have comprehensively and simultaneously measured airborne pollutant exposures and explored the associated biomarkers in susceptible healthy elderly subjects, potentially resulting in the suboptimal assessment and management of health risks. To demonstrate the exposome paradigm, we describe the rationale and design of a comprehensive biomarker and biomonitoring panel study to systematically explore the association between individual airborne exposure and adverse health outcomes. We used a combination of personal monitoring for airborne pollutants, extensive human biomonitoring, advanced omics analysis, confounding information, and statistical methods. We established an exploratory panel study of Biomarkers of Air Pollutant Exposure in Chinese people aged 60-69 years (China BAPE), which included 76 healthy residents from a representative community in Jinan City, Shandong Province. During the period between September 2018 and January 2019, we conducted prospective longitudinal monitoring with a 3-day assessment every month. This project: (1) leveraged advanced tools for personal airborne exposure monitoring (external exposures); (2) comprehensively characterized biological samples for exogenous and endogenous compounds (e.g., targeted and untargeted monitoring) and multi-omics scale measurements to explore potential biomarkers and putative toxicity pathways; and (3) systematically evaluated the relationships between personal exposure to air pollutants, and novel biomarkers of exposures and effects using exposome-wide association study approaches. These findings will contribute to our understanding of the mechanisms underlying the adverse health impacts of air pollution exposures and identify potential adverse clinical outcomes that can facilitate the development of effective prevention and targeted intervention techniques.


Assuntos
Poluentes Atmosféricos , Expossoma , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Biomarcadores , China , Exposição Ambiental/análise , Humanos , Estudos Prospectivos
19.
NPJ Vaccines ; 6(1): 89, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262052

RESUMO

In a phase 1 randomized, single-center clinical trial, inactivated influenza virus vaccine delivered through dissolvable microneedle patches (MNPs) was found to be safe and immunogenic. Here, we compare the humoral and cellular immunologic responses in a subset of participants receiving influenza vaccination by MNP to the intramuscular (IM) route of administration. We collected serum, plasma, and peripheral blood mononuclear cells in 22 participants up to 180 days post-vaccination. Hemagglutination inhibition (HAI) titers and antibody avidity were similar after MNP and IM vaccination, even though MNP vaccination used a lower antigen dose. MNPs generated higher neuraminidase inhibition (NAI) titers for all three influenza virus vaccine strains tested and triggered a larger percentage of circulating T follicular helper cells (CD4 + CXCR5 + CXCR3 + ICOS + PD-1+) compared to the IM route. Our study indicates that inactivated influenza virus vaccination by MNP produces humoral and cellular immune response that are similar or greater than IM vaccination.

20.
Retrovirology ; 18(1): 8, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731158

RESUMO

BACKGROUND: To determine if individuals, from HIV-1 serodiscordant couple cohorts from Rwanda and Zambia, who become HIV-positive have a distinct inflammatory biomarker profile compared to individuals who remain HIV-negative, we compared levels of biomarkers in plasma of HIV-negative individuals who either seroconverted (pre-infection) and became HIV-positive or remained HIV-negative (uninfected). RESULTS: We observed that individuals in the combined cohort, as well as those in the individual country cohorts, who later became HIV-1 infected had significantly higher baseline levels of multiple inflammatory cytokines/chemokines compared to individuals who remained HIV-negative. Genital inflammation/ulceration or schistosome infections were not associated with this elevated profile. Defined levels of ITAC and IL-7 were significant predictors of later HIV acquisition in ROC predictive analyses, whereas the classical Th1 and Th2 inflammatory cytokines such as IL-12 and interferon-γ or IL-4, IL-5 and Il-13 were not. CONCLUSIONS: Overall, the data show a significant association between increased plasma biomarkers linked to inflammation and immune activation and HIV acquisition and suggests that pre-existing conditions that increase systemic biomarkers represent a factor for increased risk of HIV infection.


Assuntos
Citocinas/sangue , Infecções por HIV/sangue , Infecções por HIV/diagnóstico , HIV-1/imunologia , Inflamação/sangue , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Inflamação/virologia , Masculino , Fatores de Risco , Ruanda , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA