Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Genet Med ; : 101177, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38855852

RESUMO

PURPOSE: Critically ill infants from marginalized populations disproportionately receive care in neonatal intensive care units (NICUs) that lack access to state-of-the-art genomic care, leading to inequitable outcomes. We sought provider perspectives to inform our implementation study (VIGOR) providing rapid genomic sequencing within these settings. METHODS: We conducted semi-structured focus groups with neonatal and genetics providers at five NICUs at safety-net hospitals, informed by the Promoting Action on Research Implementation in Health Services framework, which incorporates evidence, context, and facilitation domains. We iteratively developed codes and themes until thematic saturation was reached. RESULTS: Regarding evidence, providers felt that genetic testing benefits infants and families. Regarding context, the major barriers identified to genomic care were genetic testing cost, lack of genetics expertise for disclosure and follow-up, and navigating the complexity of selecting and ordering genetic tests. Providers had negative feelings about the current status quo and inequity in genomic care across NICUs. Regarding facilitation, providers felt that a virtual support model like VIGOR would address major barriers and foster family-centered care and collaboration. CONCLUSION: NICU providers at safety-net hospitals believe that access to state-of-the-art genomic care is critical for optimizing infant outcomes, yet substantial barriers exist that the VIGOR study may address.

2.
Mol Cancer Ther ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38670552

RESUMO

Delta-like ligand 3 (DLL3) is expressed in more than 70% of small cell lung cancers (SCLCs) and other neuroendocrine-derived tumor types. SCLC is highly aggressive and limited therapeutic options lead to poor prognosis for patients. HPN328 is a tri-specific T cell activating construct (TriTAC) consisting of three binding domains: a CD3 binder for T cell engagement, an albumin binder for half-life extension, and a DLL3 binder for tumor cell engagement. In vitro assays, rodent models and non-human primates were used to assess the activity of HPN328. HPN328 induces potent dose-dependent killing of DLL3-expressing SCLC cell lines in vitro concomitant with T cell activation and cytokine release. In an NCI-H82 xenograft model with established tumors, HPN328 treatment led to T cell recruitment and anti-tumor activity. In an immunocompetent mouse model expressing a human CD3ε epitope, mice previously treated with HPN328 withstood tumor rechallenge, demonstrating long-term anti-tumor immunity. When repeat doses were administered to cynomolgus monkeys, HPN328 was well tolerated up to 10 mg/kg. Pharmacodynamic changes, such as transient cytokine elevation, were observed, consistent with the expected mechanism of action of T cell engagers. HPN328 exhibited linear pharmacokinetic in the given dose range with a serum half-life of 78 to 187 hours, supporting weekly or less frequent administration of HPN328 in humans. Preclinical and nonclinical characterization suggests that HPN328 is a highly efficacious, safe, and novel therapeutic candidate. A phase 1/2 clinical trial is currently underway testing safety and efficacy in patients with DLL3 expressing malignancies.

3.
BMJ Open ; 14(2): e080529, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320840

RESUMO

INTRODUCTION: Rapid genomic sequencing (rGS) in critically ill infants with suspected genetic disorders has high diagnostic and clinical utility. However, rGS has primarily been available at large referral centres with the resources and expertise to offer state-of-the-art genomic care. Critically ill infants from racial and ethnic minority and/or low-income populations disproportionately receive care in safety-net and/or community settings lacking access to state-of-the-art genomic care, contributing to unacceptable health equity gaps. VIrtual GenOme CenteR is a 'proof-of-concept' implementation science study of an innovative delivery model for genomic care in safety-net neonatal intensive care units (NICUs). METHODS AND ANALYSIS: We developed a virtual genome centre at a referral centre to remotely support safety-net NICU sites predominantly serving racial and ethnic minority and/or low-income populations and have limited to no access to rGS. Neonatal providers at each site receive basic education about genomic medicine from the study team and identify eligible infants. The study team enrols eligible infants (goal n of 250) and their parents and follows families for 12 months. Enrolled infants receive rGS, the study team creates clinical interpretive reports to guide neonatal providers on interpreting results, and neonatal providers return results to families. Data is collected via (1) medical record abstraction, (2) surveys, interviews and focus groups with neonatal providers and (3) surveys and interviews with families. We aim to examine comprehensive implementation outcomes based on the Proctor Implementation Framework using a mixed methods approach. ETHICS AND DISSEMINATION: This study is approved by the institutional review board of Boston Children's Hospital (IRB-P00040496) and participating sites. Participating families are required to provide electronic written informed consent and neonatal provider consent is implied through the completion of surveys. The results will be disseminated via peer-reviewed publications and data will be made accessible per National Institutes of Health (NIH) policies. TRIAL REGISTRATION NUMBER: NCT05205356/clinicaltrials.gov.


Assuntos
Etnicidade , Unidades de Terapia Intensiva Neonatal , Recém-Nascido , Lactente , Criança , Humanos , Estado Terminal , Grupos Minoritários , Genômica
4.
Cell Rep ; 43(1): 113622, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38159274

RESUMO

While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.


Assuntos
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Microglia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neurônios/metabolismo , Citocinas/metabolismo
5.
Am J Hum Genet ; 110(11): 1976-1982, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37802069

RESUMO

Certain classes of genetic variation still escape detection in clinical sequencing analysis. One such class is retroelement insertion, which has been reported as a cause of Mendelian diseases and may offer unique therapeutic implications. Here, we conducted retroelement profiling on whole-genome sequencing data from a cohort of 237 individuals with ataxia telangiectasia (A-T). We found 15 individuals carrying retroelement insertions in ATM, all but one of which integrated in noncoding regions. Systematic functional characterization via RNA sequencing, RT-PCR, and/or minigene splicing assays showed that 12 out of 14 intronic insertions led or contributed to ATM loss of function by exon skipping or activating cryptic splice sites. We also present proof-of-concept antisense oligonucleotides that suppress cryptic exonization caused by a deep intronic retroelement insertion. These results provide an initial systematic estimate of the contribution of retroelements to the genetic architecture of recessive Mendelian disorders as ∼2.1%-5.5%. Our study highlights the importance of retroelement insertions as causal variants and therapeutic targets in genetic diseases.


Assuntos
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Retroelementos/genética , Mutação , Splicing de RNA/genética , Sítios de Splice de RNA , Íntrons
6.
Clin Pharmacol Ther ; 114(5): 994-1001, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37620252

RESUMO

Precision medicine has evolved from the application of pharmacogenetic biomarkers to the prospective development of targeted therapies in patients with specific molecular/genetic subtypes of disease to truly "N-of-1" medicines targeted to very small numbers of patients - in some cases, a single identified patient. This latter iteration of precision medicine presents unprecedented opportunities for patients with severe, life-threatening, or life-limiting diseases. At the same time, these modalities present complex scientific, clinical, and regulatory challenges. To realize the promise of individualized medicines, a multistakeholder approach to streamlining medical diagnoses, advancing the technologies that enable development of these therapeutic modalities, and re-envisioning collaborative environments for access and evidence generation is of critical importance. Herein, we highlight some of these challenges and opportunities.


Assuntos
Farmacogenética , Medicina de Precisão , Humanos , Estudos Prospectivos
7.
Nature ; 619(7971): 828-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438524

RESUMO

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.


Assuntos
Ataxia Telangiectasia , Splicing de RNA , Criança , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Estudos Prospectivos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Sequenciamento Completo do Genoma , Íntrons , Éxons , Medicina de Precisão , Projetos Piloto
8.
Cell Host Microbe ; 31(7): 1200-1215.e9, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37327779

RESUMO

Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here, we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera that neutralize diverse strains of HIV and target the site engaging the host receptor CD4. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one serum targeting two epitopes within the CD4-binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Mutação , Epitopos/genética , HIV-1/genética , Anticorpos Monoclonais , Proteína gp120 do Envelope de HIV/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
9.
Am J Hum Genet ; 110(7): 1034-1045, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279760

RESUMO

Newborn genomic sequencing (NBSeq) to screen for medically important genetic information is of considerable interest but data characterizing the actionability of such findings, and the downstream medical efforts in response to discovery of unanticipated genetic risk variants, are lacking. From a clinical trial of comprehensive exome sequencing in 127 apparently healthy infants and 32 infants in intensive care, we previously identified 17 infants (10.7%) with unanticipated monogenic disease risks (uMDRs). In this analysis, we assessed actionability for each of these uMDRs with a modified ClinGen actionability semiquantitative metric (CASQM) and created radar plots representing degrees of penetrance of the condition, severity of the condition, effectiveness of intervention, and tolerability of intervention. In addition, we followed each of these infants for 3-5 years after disclosure and tracked the medical actions prompted by these findings. All 17 uMDR findings were scored as moderately or highly actionable on the CASQM (mean 9, range: 7-11 on a 0-12 scale) and several distinctive visual patterns emerged on the radar plots. In three infants, uMDRs revealed unsuspected genetic etiologies for existing phenotypes, and in the remaining 14 infants, uMDRs provided risk stratification for future medical surveillance. In 13 infants, uMDRs prompted screening for at-risk family members, three of whom underwent cancer-risk-reducing surgeries. Although assessments of clinical utility and cost-effectiveness will require larger datasets, these findings suggest that large-scale comprehensive sequencing of newborns will reveal numerous actionable uMDRs and precipitate substantial, and in some cases lifesaving, downstream medical care in newborns and their family members.


Assuntos
Testes Genéticos , Genoma Humano , Humanos , Recém-Nascido , Triagem Neonatal , Genômica , Sequenciamento do Exoma
11.
Comput Biol Med ; 159: 106595, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087780

RESUMO

BACKGROUND: Medical images such as Optical Coherence Tomography (OCT) images acquired from different devices may show significantly different intensity profiles. An automatic segmentation model trained on images from one device may perform poorly when applied to images acquired using another device, resulting in a lack of generalizability. This study addresses this issue using domain adaptation methods improved by Cycle-Consistent Generative Adversarial Networks (CycleGAN), especially when the ground-truth labels are only available in the source domain. METHODS: A two-stage pipeline is proposed to generate segmentation in the target domain. The first stage involves the training of a state-of-the-art segmentation model in the source domain. The second stage aims to adapt the images from the target domain to the source domain. The adapted target domain images are segmented using the model in the first stage. Ablation tests were performed with integration of different loss functions, and the statistical significance of these models is reported. Both the segmentation performance and the adapted image quality metrics were evaluated. RESULTS: Regarding the segmentation Dice score, the proposed model ssppg achieves a significant improvement of 46.24% compared to without adaptation and reaches 87.4% of the upper limit of the segmentation performance. Furthermore, image quality metrics, including FID and KID scores, indicate that adapted images with better segmentation also have better image qualities. CONCLUSION: The proposed method demonstrates the effectiveness of segmentation-driven domain adaptation in retinal imaging processing. It reduces the labor cost of manual labeling, incorporates prior anatomic information to regulate and guide domain adaptation, and provides insights into improving segmentation qualities in image domains without labels.


Assuntos
Retina , Tomografia de Coerência Óptica , Retina/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
12.
Cell ; 186(6): 1263-1278.e20, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868218

RESUMO

A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ∼7,000 distinct amino acid mutations in the context of up to ∼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ∼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.


Assuntos
COVID-19 , Vírus de RNA , Humanos , SARS-CoV-2/genética , Mutação , Anticorpos Neutralizantes , Anticorpos Antivirais
13.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993197

RESUMO

Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera known to target the CD4-binding site that neutralize diverse strains of HIV. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one sera targeting two epitopes within the CD4 binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.

14.
Am J Med Genet C Semin Med Genet ; 193(1): 30-43, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738469

RESUMO

Most rare diseases are caused by single-gene mutations, and as such, lend themselves to a host of new gene-targeted therapies and technologies including antisense oligonucleotides, phosphomorpholinos, small interfering RNAs, and a variety of gene delivery and gene editing systems. Early successes are encouraging, however, given the substantial number of distinct rare diseases, the ability to scale these successes will be unsustainable without new development efficiencies. Herein, we discuss the need for genomic newborn screening to match pace with the growing development of targeted therapeutics and ability to rapidly develop individualized therapies for rare variants. We offer approaches to move beyond conventional "one disease at a time" preclinical and clinical drug development and discuss planned regulatory innovations that are necessary to speed therapy delivery to individuals in need. These proposals leverage the shared properties of platform classes of therapeutics and innovative trial designs including master and platform protocols to better serve patients and accelerate drug development. Ultimately, there are risks to these novel approaches; however, we believe that close partnership and transparency between health authorities, patients, researchers, and drug developers present the path forward to overcome these challenges and deliver on the promise of gene-targeted therapies for rare diseases.


Assuntos
Edição de Genes , Doenças Raras , Recém-Nascido , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Terapia Genética/métodos , Genômica
15.
Am J Med Genet C Semin Med Genet ; 193(1): 87-98, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594517

RESUMO

Recent advancements in gene-targeted therapies have highlighted the critical role data sharing plays in successful translational drug development for people with rare diseases. To scale these efforts, we need to systematize these sharing principles, creating opportunities for more rapid, efficient, and scalable drug discovery/testing including long-term and transparent assessment of clinical safety and efficacy. A number of challenges will need to be addressed, including the logistical difficulties of studying rare diseases affecting individuals who may be scattered across the globe, scientific, technical, regulatory, and ethical complexities of data collection, and harmonization and integration across multiple platforms and contexts. The NCATS/NIH Gene-Targeted Therapies: Early Diagnosis and Equitable Delivery meeting series held during June 2021 included data sharing models that address these issues and framed discussions of areas that require improvement. This article describes these discussions and provides a series of considerations for future data sharing.


Assuntos
Disseminação de Informação , Doenças Raras , Humanos , Doenças Raras/genética , Doenças Raras/terapia
16.
Am J Med Genet C Semin Med Genet ; 193(1): 7-12, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691939

RESUMO

The cost and time needed to conduct whole-genome sequencing (WGS) have decreased significantly in the last 20 years. At the same time, the number of conditions with a known molecular basis has steadily increased, as has the number of investigational new drug applications for novel gene-based therapeutics. The prospect of precision gene-targeted therapy for all seems in reach… or is it? Here we consider practical and strategic considerations that need to be addressed to establish a foundation for the early, effective, and equitable delivery of these treatments.


Assuntos
Terapia Genética , Doenças Raras , Humanos , Doenças Raras/genética , Doenças Raras/terapia
17.
Am J Med Genet C Semin Med Genet ; 193(1): 19-29, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36453229

RESUMO

Rare genetic disorders affect as many as 3%-5% of all babies born. Approximately 10,000 such disorders have been identified or hypothesized to exist. Treatment is supportive except in a limited number of instances where specific therapies exist. Development of new therapies has been hampered by at least two major factors: difficulty in diagnosing diseases early enough to enable treatment before irreversible damage occurs, and the high cost of developing new drugs and getting them approved by regulatory agencies. Whole-genome sequencing (WGS) techniques have become exponentially less expensive and more rapid since the beginning of the human genome project, such that return of clinical data can now be achieved in days rather than years and at a cost that is comparable to other less expansive genetic testing. Thus, it is likely that WGS will ultimately become a mainstream, first-tier NBS technique at least for those disorders without appropriate high-throughput functional tests. However, there are likely to be several steps in the evolution to this end. The clinical implications of these advances are profound but highlight the bottlenecks in drug development that still limit transition to treatments. This article summarizes discussions arising from a recent National Institute of Health conference on nucleic acid therapy, with a focus on the impact of WGS in the identification of diagnosis and treatment of rare genetic disorders.


Assuntos
Testes Genéticos , Terapia Genética , Humanos , Testes Genéticos/métodos , Sequenciamento Completo do Genoma , Doenças Raras
18.
Nucleic Acid Ther ; 33(1): 17-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516128

RESUMO

Antisense oligonucleotides (ASOs) can modulate pre-mRNA splicing. This offers therapeutic opportunities for numerous genetic diseases, often in a mutation-specific and sometimes even individual-specific manner. Developing therapeutic ASOs for as few as even a single patient has been shown feasible with the development of Milasen for an individual with Batten disease. Efforts to develop individualized ASOs for patients with different genetic diseases are ongoing globally. The N = 1 Collaborative (N1C) is an umbrella organization dedicated to supporting the nascent field of individualized medicine. N1C recently organized a workshop to discuss and advance standards for the rigorous design and testing of splice-switching ASOs. In this study, we present guidelines resulting from that meeting and the key recommendations: (1) dissemination of standardized experimental designs, (2) use of standardized reference ASOs, and (3) a commitment to data sharing and exchange.


Assuntos
Oligonucleotídeos Antissenso , Splicing de RNA , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA/genética , Éxons/genética , Medicina de Precisão
19.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168237

RESUMO

Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population, and how this heterogeneity affects virus evolution. Here we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of the A/Hong Kong/45/2019 (H3N2) and A/Perth/16/2009 (H3N2) strains affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that fixed in influenza variants after 2020 cause the greatest escape from sera from younger individuals. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups, and suggest approaches to understand how this heterogeneous selection shapes viral evolution.

20.
Virus Evol ; 8(2): veac110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582502

RESUMO

A challenge in studying viral immune escape is determining how mutations combine to escape polyclonal antibodies, which can potentially target multiple distinct viral epitopes. Here we introduce a biophysical model of this process that partitions the total polyclonal antibody activity by epitope and then quantifies how each viral mutation affects the antibody activity against each epitope. We develop software that can use deep mutational scanning data to infer these properties for polyclonal antibody mixtures. We validate this software using a computationally simulated deep mutational scanning experiment and demonstrate that it enables the prediction of escape by arbitrary combinations of mutations. The software described in this paper is available at https://jbloomlab.github.io/polyclonal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA