Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(5): C1320-C1333, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497114

RESUMO

Intramuscular fat (IMF) refers to the lipid stored in skeletal muscle tissue. The number and size of intramuscular adipocytes are the primary factors that regulate IMF content. Intramuscular adipocytes can be derived from either in situ or ectopic migration. In this study, it was discovered that the regulation of IMF levels is achieved through the chemokine (C-C motif) ligand 5 (CCL5)/chemokine (C-C motif) receptor 5 (CCR5) pathway by modulating adipocyte migration. In coculture experiments, C2C12 myotubes were more effective in promoting the migration of 3T3-L1 preadipocytes than C2C12 myoblasts, along with increasing CCL5. Correspondingly, overexpressing the CCR5, one of the receptors of CCL5, in 3T3-L1 preadipocytes facilitated their migration. Conversely, the application of the CCL5/CCR5 inhibitor, MARAVIROC (MVC), reduced this migration. In vivo, transplanted experiments of subcutaneous adipose tissue (SCAT) from transgenic mice expressing green fluorescent protein (GFP) provided evidence that injecting recombinant CCL5 (rCCL5) into skeletal muscle promotes the migration of subcutaneous adipocytes to the skeletal muscle. The level of CCL5 in skeletal muscle increased with obesity. Blocking the CCL5/CCR5 axis by MVC inhibited IMF deposition, whereas elevated skeletal muscle CCL5 promoted IMF deposition in obese mice. These results establish a link between the IMF and the CCL5/CCR5 pathway, which could have a potential application for modulating IMF through adipocyte migration.NEW & NOTEWORTHY C2C12 myotubes attract 3T3-L1 preadipocyte migration regulated by the chemokine (C-C motif) ligand 5 (CCL5)/ chemokine (C-C motif) receptor 5 (CCR5) axis. High levels of skeletal muscle-specific CCL5 promote the migration of subcutaneous adipocytes to skeletal muscle and induce the intramuscular fat (IMF) content.


Assuntos
Adipócitos , Quimiocina CCL5 , Miocinas , Obesidade , Animais , Camundongos , Quimiocina CCL5/genética , Quimiocina CCL5/farmacologia , Ligantes , Camundongos Obesos , Músculo Esquelético/metabolismo , Receptores CCR/metabolismo , Adipócitos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia
2.
Biochem Biophys Res Commun ; 686: 149162, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-37924666

RESUMO

Intramuscular fat (IMF), also known as ectopic fat deposits in skeletal muscle. Researches of IMF mainly focus on increasing the number and size of intramuscular adipocytes in situ. However, recent studies have shown that chemokines secreted by skeletal muscle recruit adipocytes to increase intramuscular fat content. Chemokine ligand 5 (CCL5), a member of chemokine family, is involved in the regulation of cell migration, inflammatory responses, and energy metabolism. In this study, we determined Vitamin K3 (VK3) enhanced Ccl5 transcription and expression, thus resulting in increased preadipocyte migration. VK3-injected vastus lateralis (VL) was observed an increased CCL5 concentration and IMF deposition, whereas blockade of the CCL5/CCR5 axis decreased IMF deposition.VK3 treatment also increased the body weight and VL ratio in mice. In summary, VK3, which targets CCL5, is expected to be a novel pharmacological regulator for promoting IMF content.


Assuntos
Músculo Esquelético , Vitamina K 3 , Animais , Camundongos , Ligantes , Músculo Esquelético/metabolismo , Adipócitos/metabolismo
3.
Anim Genet ; 54(4): 526-535, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36871966

RESUMO

Intramuscular fat (IMF) is one of the most important indexes of pork taste quality. Diacylglycerol acyltransferase 1 (DGAT1), belonging to the acyl-coenzyme A: DGAT enzymes family, is a rate-limiting enzyme responsible for the final step of triglyceride (TG) synthesis. It is involved in TG storage in skeletal muscle; however, the underlying mechanism is not well understood. This study aimed to uncover functional mutations that can influence DGAT1 expression and consequently affect IMF deposition in pork. Two experimental groups containing individuals with high and low IMF content (6.23 ± 0.20 vs. 1.25 ± 0.05, p < 0.01) were formed from 260 Duroc × Large White × Yorkshire (D × L × Y) cross-bred pigs. A novel SNP c.-379 C>T was uncovered in the DGAT1 gene using comparative sequencing with pool DNA of high- and low-IMF groups. The IMF content of CT genotype individuals (3.19 ± 0.11%) was higher than that of CC genotype individuals (2.86 ± 0.11%) when analyzing 260 D × L × Y pigs (p < 0.05). The DGAT1 expression levels revealed a significant positive correlation with IMF content (r = 0.33, p < 0.01). Luciferase assay revealed that the DGAT1 promoter with the c.-379 T allele has a higher transcription activity than that bearing the C allele in C2C12 myoblast cells, but not in 3T3-L1 pre-adipocytes. Online prediction followed by chromatin immunoprecipitation-polymerase chain reaction assay confirmed that myogenic determination factor 1 (MYOD1) binds to the DGAT1 promoter with the c.-379 C allele but not the T allele. In vitro experiments demonstrated that MYOD1 represses DGAT1 transcription and lipogenesis. As a muscle-specific transcription factor, MYOD1 can inhibit the transcription of DGAT1 with the c.-379 C allele in muscle cells. However, in the absence of MYOD1 binding to the mutated DGAT1 promoter with the c.-379 T allele, DGAT1 expresses at a higher level in the muscle cells of the c.-379 T genotype, leading to more intramyocellular lipid accumulation than in the muscle cells of the c.-379 C genotype. The SNP c.-379 C>T in the promoter region of the DGAT1 gene provides a promising molecular marker for improving pork IMF content without affecting other fat depots.


Assuntos
Diacilglicerol O-Aciltransferase , Músculo Esquelético , Suínos , Animais , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica , Mutação , Lipídeos
4.
Biochem Biophys Res Commun ; 619: 68-75, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35738067

RESUMO

Obesity, which is associated with type 2 diabetes, is a threat to human health. There are studies, which suggest that some compounds can induce browning of white adipocytes to combat obesity. In this study, we selected nonivamide, an analog of capsaicin, to detect whether it influenced the browning of porcine white adipocytes. First, we found 25 µM nonivamide promoted apoptosis of porcine subcutaneous pre-adipocytes. After pre-adipocytes differentiation, nonivamide inhibited adipogenesis by reducing the expressions of Pparγ, Cebpα, while it promoted lipolysis by up-regulating Hsl, Atgl. Nonivamide also induced browning of porcine subcutaneous adipocytes by up-regulating the expression of brown and beige adipocyte gene markers, such as Prdm16, Cidea, and Slc27a1. Additionally, thermogenesis gene markers Cpt1a and Cpt1b were significantly up-regulated by nonivamide. Furthermore, nonivamide promoted mitochondrial biogenesis by up-regulating the expression of Tfam, Nrf1, Nrf2, and Tomm20. In conclusion, nonivamide is a potent compound to induce porcine adipocyte browning for treating obesity.


Assuntos
Adipócitos Bege , Diabetes Mellitus Tipo 2 , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Capsaicina/análogos & derivados , Capsaicina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Obesidade/metabolismo , Suínos , Termogênese
5.
Biomolecules ; 12(2)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35204738

RESUMO

Intramuscular fat (IMF) is considered as the fat deposited between muscle fibers. The extracellular matrix microenvironment of adipose tissue is of critical importance for the differentiation, remodeling and function of adipocytes. Therefore, in this study we extracted the muscle tissue centrifugal fluid (MTF) of the longissimus dorsi of Erhualian pigs to mimic the microenvironment of intramuscular pre-adipocytes. MTF of pigs with low intramuscular fat level can inhibit pig intramuscular pre-adipocytes differentiation. Then, proteomics technology (iTRAQ) was used to analyze the MTF with different IMF content, and it was found that individuals with high IMF had low ACAT2 (Acyl-CoA: cholesterol acyltransferases 2) levels, while individuals with low IMF had high ACAT2 levels. Significant changes took place in the pathways involved in coenzyme A, which are closely related to fat and cholesterol metabolism. Therefore, we speculate that ACAT2, as an important element involved in cholesterol metabolism, may become a potential molecular marker for the mechanism of pig intramuscular preadipocytes differentiation. Overexpression of ACAT2 in pig intramuscular pre-adipocytes can inhibit their differentiation, while adding ACAT2 inhibitor avasimibe can rescue the process. Knockdown of srebp2 or ldlr, which are two key genes closely related to ACAT2 and cholesterol metabolism, can inhibit pig intramuscular pre-adipocytes differentiation. Overall, our results suggest that ACAT2 is a novel negative regulator of intramuscular adipocyte differentiation through regulation of pparγ, cebpα signaling and srebp2/ldlr signaling involved in cholesterol metabolism.


Assuntos
Adipócitos , Tecido Adiposo , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Músculos/metabolismo , Suínos
6.
Anim Sci J ; 92(1): e13544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738916

RESUMO

Muscle-fiber type in livestock skeletal muscles influences meat quality, but the underlying mechanisms remain unclear. We previously showed that Homeobox A11 (Hoxa11) and Homeobox A13 (Hoxa13) are differentially expressed in fast- and slow-twitch muscles, but their effects on the formation of muscle-fiber types and intramuscular fat deposition have not been investigated. Here, our results revealed that overexpression of Hoxa11 and Hoxa13 delayed cell-cycle progression in C2C12 myoblasts, reduced their proliferation, and promoted their differentiation into slow-twitch muscle fibers. Knockdown experiments produced the opposite results. The conditioned media of differentiated C2C12 cells with Hoxa11/Hoxa13 overexpression or knockdown were harvested. Staining results showed that adipogenesis of preadipocytes was significantly promoted by Hoxa13 knockdown C2C12 cell culture medium. Changes in lipid accumulation were due to a reduction in lipid decomposition and an increase in triglyceride synthesis; genes related to fatty-acid synthesis were decreased. In conclusion, our study showed that Hoxa11 and Hoxa13 promote slow-twitch muscle formation and indirectly regulate preadipocyte adipogenesis, which may facilitate meat-quality improvement in the future.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Qualidade dos Alimentos , Expressão Gênica/genética , Proteínas de Homeodomínio/fisiologia , Metabolismo dos Lipídeos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/metabolismo , Carne de Porco , Células 3T3-L1 , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Mioblastos , Suínos
7.
Lipids ; 56(3): 279-287, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33305404

RESUMO

Intramuscular fat (IMF) and subcutaneous fat (SCF) are important traits affecting the economics of the pork industry, in which less SCF and more IMF content is desirable. However, the mechanisms that regulate IMF and SCF content are not clear yet. In this study, we demonstrate that KLF3 (Krüppel-like factor 3) was negatively correlated with IMF content in the longissimus dorsi muscle of Erhualian pigs. In addition, the expression level of KLF3 was significantly higher in IMF than SCF. Overexpression and knockdown experiments revealed that KLF3 could suppress adipocyte differentiation in vitro by downregulating adipogenic markers, including PPARG, C/EBPA, and FABP4. Luciferase activity analysis proved that miR-32-5p was able to suppress KLF3. Notably, miR-32-5p level was negatively correlated to KLF3 mRNA level in both IMF and SCF tissues. The same relationship was proved in samples with different IMF content. Further studies showed that miR-32-5p could promote adipocyte differentiation via inhibiting KLF3. Our results suggest that the miR-32-5p-KLF3 pathway is involved in the regulation of differential fat deposition of IMF and SCF tissues.


Assuntos
Adipócitos/citologia , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Músculo Esquelético/metabolismo , Adipócitos/metabolismo , Adipogenia , Animais , Diferenciação Celular , Células Cultivadas , Masculino , Músculo Esquelético/citologia , Gordura Subcutânea/metabolismo , Suínos , Regulação para Cima
8.
J Therm Biol ; 89: 102532, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32364978

RESUMO

Heat stress reduces oocyte competence, thereby causing lower fertility in animals. Chronic and acute heat stresses cause extensive morphological damage in animals, but few reports have focused on the effects of chronic and acute heat stresses on ovarian function and heat shock protein (HSP) gene expression during ovarian injury. In this study, we subjected female mice to chronic and acute heat stresses; we then calculated the ovary index, examined ovary microstructure, and measured the expression of multiple HSP family genes. Chronic heat stress reduced whole-body and ovarian growth but had little effect on the ovarian index; acute heat stress did not alter whole-body or ovarian weight. Both chronic and acute heat stresses impaired ovary function by causing the dysfunction of granular cells. Small HSP genes increased rapidly after heat treatment, and members of the HSP40, HSP70, and HSP90 families were co-expressed to function in the regulation of the heat stress response. We suggest that the HSP chaperone machinery may regulate the response to heat stress in the mouse ovary.


Assuntos
Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Folículo Ovariano/metabolismo , Animais , Feminino , Proteínas de Choque Térmico/metabolismo , Camundongos , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento
9.
J Lipid Res ; 60(4): 767-782, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552289

RESUMO

In obesity and diabetes, intramuscular fat (IMF) content correlates markedly with insulin sensitivity, which makes IMF manipulation an area of therapeutic interest. Melatonin, an important circadian rhythm-regulating hormone, reportedly regulates fat deposition, but its effects on different types of adipose vary. Little is known about the role of melatonin in IMF deposition. Here, using intramuscular preadipocytes in pigs, we investigated to determine whether melatonin affects or regulates IMF deposition. We found that melatonin greatly inhibited porcine intramuscular preadipocyte proliferation. Although melatonin administration significantly upregulated the expression of adipogenic genes, smaller lipid droplets were formed in intramuscular adipocytes. Additional investigation demonstrated that melatonin promoted lipolysis of IMF by activating protein kinase A and the signaling of ERK1/2. Moreover, melatonin increased thermogenesis in intramuscular adipocytes by enhancing mitochondrial biogenesis and mitochondrial respiration. A mouse model, in which untreated controls were compared with mice that received 3 weeks of melatonin treatment, verified the effect of melatonin on IMF deposition. In conclusion, melatonin reduces IMF deposition by upregulating lipolysis and mitochondrial bioactivities. These data establish a link between melatonin signaling and lipid metabolism in mammalian models and suggest the potential for melatonin administration to treat or prevent obesity and related diseases.


Assuntos
Antioxidantes/farmacologia , Gorduras/antagonistas & inibidores , Lipólise/efeitos dos fármacos , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Gorduras/metabolismo , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Suínos
10.
Anim Reprod Sci ; 185: 97-103, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28866373

RESUMO

Broodiness causes reduced reproductive ability in poultry, but its regulatory mechanism remains poorly understood. ROS (reactive oxygen species) and autophagy are important for follicular development, and the interaction between the two may play a role in regulating broodiness. We examined goose follicles for ROS and oxidation scavenger activities during the egg-laying and broody stages. The follicular granulosa cells were exposed to media containing H2O2, and the interactions between ROS and autophagy in follicular granulosa cells in vitro were analyzed using a Western blot method. We found that the activities of superoxide dismutase (SOD) and lactate dehydrogenase (LDH) were enhanced and the amount of malondialdehyde (MDA) decreased in broody goose follicles. H2O2 inhibited the cell viability and induced autophagy. Furthermore, it was also found that H2O2 regulated autophagy by reducing mTOR and increasing p53; however, H2O2 had no impact on Beclin1 or ATG12. It was also shown that the enhanced autophagy lessened ROS-induced damages. We conclude that ROS and autophagy both played important roles in regulating follicular development to control broodiness in geese, and ROS activated autophagy in follicular granulosa cells via the mTOR pathway.


Assuntos
Anseriformes/fisiologia , Autofagia/fisiologia , Células da Granulosa/fisiologia , Comportamento de Nidação/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
11.
Poult Sci ; 95(5): 1156-64, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26908882

RESUMO

Broodiness is observed in most domestic fowls and influences egg production. The goose is one of the most important waterfowls, having strong broody behavior. However, whether autophagy and follicular internal environment play a role in the broodiness behavior of goose is unknown. In this report, we analyzed the follicular internal environment and granulosa cell autophagy of goose follicles. The results show that the contents of hormones, including prolactin (PRL), progesterone (P4), and estradiol (E2), increased in broody goose follicles. Most importantly, the level of granulosa cell autophagy in broody goose follicles was elevated, detected by electron microscopy and western blotting. Also, the expressions of positive regulators of autophagy, including miR-7, miR-29, miR-100, miR-181, PRLR, LC3, p53,Beclin1, Atg9, and Atg12, were up-regulated and the expressions of negative regulators of autophagy, including miR-34b and miR-34c, were down-regulated in broody goose follicles. Our results suggest that goose broodiness is involved in increased granulosa cell autophagy and homeostasis imbalance of internal environment in the follicles. This work contributes to our knowledge of goose broodiness and may influence egg production.


Assuntos
Anseriformes/fisiologia , Células da Granulosa/fisiologia , Homeostase/fisiologia , Comportamento de Nidação/fisiologia , Folículo Ovariano/metabolismo , Animais , Feminino , MicroRNAs , Prolactina/sangue , Prolactina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA