Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MycoKeys ; 108: 351-369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318423

RESUMO

Two new species; Lobothalliacrenulata Lun Wang & Y. Y. Zhang, L.lobulata Lun Wang & Y. Y. Zhang and one new variety; L.subdiffractavar.rimosa Lun Wang & Y. Y. Zhang, are reported from China and described, based on morphological, chemical and molecular characters. Phylogenetic analyses showed that these new taxa form monophyletic groups. Lobothalliacrenulata and L.lobulata, together with L.hydrocharis, L.radiosa and L.recedens, form a well-supported clade, whereas L.subdiffractavar.rimosa is nested within the samples of L.subdiffracta. Lobothalliacrenulata is characterised by its placodioid thallus, thickly pruinose upper surface with a rimose appearance, aspicilioid to lecanorine apothecia with a crenate thalline margin and concave, black and pruinose discs. Lobothallialobulata is characterised by its placodioid thallus, pruinose upper surface with lobules, aspicilioid when immature, lecanorine to zeorine apothecia at maturity and concave to plane, dark brown, shiny and epruinose discs. Lobothalliasubdiffractavar.rimosa is characterised by its areolate thallus, rimose and pruinose upper surface, lecanorine apothecia and slightly concave to plane, black and pruinose discs. Secondary metabolites were not detected in the two new species nor the new variety. A key is provided for the species of Lobothallia in China.

2.
Langmuir ; 40(32): 17038-17048, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39096502

RESUMO

The practical application of Zn-air batteries require exploring cost-effective and durable bifunctional electrocatalysts. However, the simultaneous preparation of catalysts with bifunctional activities for oxygen reduction reaction (ORR) and oxygen precipitation reaction (OER) remains challenging. Herein, we synthesized a novel hybrid catalyst (FePc/NiCo/CNT), which couples NiCo alloy with FePc through electrostatic interaction. The interaction between FePc and NiCo alloy can enhance the intrinsic catalytic activity of the active site Fe-N4 and prevent the electrolyte corrosion of the metal alloy, ultimately improving the stability of the catalyst by the microenvironment-tailoring strategy. The resultant FePc/NiCo/CNT catalyst exhibits outstanding oxygen reduction reaction (ORR) activity with a half-wave potential of 0.88 V, which is attributed to the abundant Fe-Nx active sites. Furthermore, the electron interactions between NiCo/CNT and FePc accelerate electron transfer and enhance the activation of oxygen intermediates, consequently boosting the OER activity with an overpotential of 260 mV at 10 mA cm-2. The Zn-air batteries assembled with FePc/NiCo/CNT show a high power density of 175.1 mW cm-2 and excellent cycling stability for up to 430 h at 20 mA cm-2. The preparation of oxygen electrode catalysts for renewable clean energy devices can be made more convenient with this directly engineered strategy for ORR and OER active centers.

3.
Nanoscale ; 14(3): 815-822, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34984426

RESUMO

A self-powered microRNA biosensor with triple signal amplification systems was assembled through the integration of three-dimensional DNA walkers, enzymatic biofuel cells and a capacitor. The DNA walker is designed from an enzyme-free target triggered catalytic hairpin assembly of modified gold nanoparticles. When triggered by the target microRNA, the DNA walker will move along the catalytic hairpin track, resulting in a payload release of glucose oxidase. The enzymatic biofuel cell contains the glucose oxidase bioanode and a bilirubin oxidase biocathode that bring a dramatic open circuit voltage to realize the self-powered bioassays of microRNA. A capacitor is further coupled with the enzymatic biofuel cell to further amplify the electrochemical signal, and the sensitivity increases 28.82 times through optimizing the matching capacitor. Based on this design, the present biosensor shows high performance, especially for detection limit and sensitivity. Furthermore, the present biosensor was successfully applied for serum samples, directly demonstrating its good application in clinical biomedicine and disease diagnosis.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas Metálicas , MicroRNAs , Bioensaio , DNA , Ouro , Limite de Detecção , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA